
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Removing Server Based Trust Relationships
The goal of this project was to develop, implement and deploy solutions as well as supporting processes and
standards to remediate and mitigate the risks that are inherent to utilizing UNIX server based trust
relationships in a enterprise networked environment within 30 days. Server based trust relationships can be
defined to grant different levels of authenticated or unauthenticated access. Trust between hosts can be
established at the user level or globally at the server level. Corrective action is required to remedi...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

A Case Study

Removing Server Based Trust Relationships

GIAC-Security Essentials Certification (GSEC)
Practical Assignment Version 1.4b

Option 2

Keith B. Gaughan
February 23, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page i

Table of Contents

INTRODUCTION.. 1

ORIGINAL STATE OF THE ENVIRONMENT: THE BEFORE 1

Environment and Infrastructure Overview ... 1
Figure 1: Network Topology Overview ... 2
Figure 2: Sample Trust Relationships .. 3

Problem Identification.. 4
File Configurations .. 4
File Permissions and Ownership ...6
Auditing and Validating Established Trust.. 7

Identified Vulnerabilities.. 8
Table 1A: Explanation of Snoop command arguments .. 8
Table 1B: More Snoop command arguments ... 8

Identified Risks.. 10

Existing Controls... 11

Self-Identified Gaps .. 11

CHANGING OF THE ENVIRONMENT: THE DURING...................................... 12

Plan of Attack.. 12

Identification of Trusted Hosts .. 12
Table 2: Explanation of Find command arguments ... 13

Assessment of Risks .. 13

Development of Corrective Actions... 15
Actions for Remediation..15
Actions for Mitigation ...15

Using Secure Shell (SSH).. 16

Development of Supporting Documentation .. 17
Highlights of Standard...17

Implementation of Corrective Actions.. 18
Remediation Phase .. 18
Mitigation Phase .. 19

Compliancy Monitoring ... 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page ii

NEW STATE OF THE ENVIRONMENT: THE AFTER 22

Success or Failure ... 22

Remaining Gaps and Risks .. 22

Assessment of Remaining Gaps and Risks ... 23

APPENDIX A: STANDARD FOR TRUST RELATIONSHIPS........................... 24

WORKS CITED.. 27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 1

Introduction

The goal of this project was to develop, implement and deploy solutions as well
as supporting processes and standards to remediate and mitigate the risks that
are inherent to utilizing UNIX server based trust relationships in a enterprise
networked environment within 30 days. Server based trust relationships can be
defined to grant different levels of authenticated or unauthenticated access. Trust
between hosts can be established at the user level or globally at the server level.
Corrective action is required to remediate and or mitigate the risks created by the
currently established trust based relationships and the lack of controls to prevent
their establishment. In addition to the corrective actions, alternative approaches
and solutions that have a greater emphasis on security and access accountability
will be introduced and implemented.

The completion of an internal audit assessment of the UNIX platform, with an
emphasis on the Solaris operating system, revealed excessive use of
configuration files that establish and govern trust based relationships between
servers within the corporate production network. The findings specifically
targeted root level .rhosts and /etc/hosts.equiv files. In response to the internal
assessment the UNIX Engineering Services (UES) team, of which I was a
member, and the Data Security (DS) team successfully identified corporate wide
trusted hosts, assessed the level of risk posed by existing relationships,
developed and implemented corrective actions that centered around the use of
Secure Shell (SSH), established compliancy monitoring of deployed solutions
and development of documented standards.

Original State of the Environment: The Before

Environment and Infrastructure Overview
The current networked environment consists of servers and network devices that
are typical of a large diverse organization. Technologies found throughout the
enterprise include such platforms as Solaris, AIX, Linux, Windows and
Mainframes in addition to a variety of network devices such as but not limited to
routers and switches. Our efforts were targeted directly to the Solaris platform.
The Solaris server base consisted of approximately 450 servers of various
hardware architectures ranging from Enterprise 12Ks to Sparc 20s and
accounted for over 90 percent of all deployed UNIX servers within the enterprise.

The currently implemented network topology can be referred to as flat in nature
with minimal separation between network segments. In general, the network
security architecture is poor because development and production systems are
located on the same networks. Additionally, management, operational and end-
user traffic flow over the same networks as production data. A generic depiction

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 2

of the current network topology is illustrated in figure 1. The illustration shows
that the only defined separation occurs in the demilitarized zone (DMZ), which
supports a few servers for the purpose of email, external ftp and the isolated
network where application servers provide services to external customers. The
bulk of the core infrastructure resides in what is referred to as the CIN (Corporate
Internal Network). Internal applications such as human resource systems,
corporate finance systems, customer applications and general end-user traffic all
reside within the CIN portion the network.

Figure 1: Network Topology Overview

The current network topology greatly enhances the risks that result from the
establishment and use of trust relationships because development and
production servers, administrator workstations, end-user desktops and even
servers within isolated networks can be setup to trust one another. The lack of
segmentation allows unimpeded access to servers in both isolated networks and
the CIN portion of the network. In Figure 2, a more detailed version of the CIN
an isolated portion of the network as shown in figure1, you will see examples of
typical trust relationships that are a common occurrence between servers,
workstations and desktops.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 3

Figure 2: Sample Trust Relationships

Figure 2 highlights three separate examples of trusted relationships. The first
example “Trust Sample 1” (marked in red) highlights a system administrator as
he logs onto a utility server from his workstation using rlogin, then hops to the
trusted production server using rlogin again. This process would be a very
common occurrence because administrators would require local accounts on
many servers and using rlogin provides the convenience of not having to
continually enter username and passwords. The second example “Trust Sample
2” (marked in green) illustrates a developer from a windows based desktop
performing a telnet session to a development UNIX server. From the
development server, an rcp (remote copy) is done to copy data files to a trusted
production server located in the isolated network. This type of activity is common
because developers do not typically have direct access to production serves. In
this instance, the developers would telnet to the development UNIX server then
assume the identity of an application user account that would be trusted by the
production server in the isolated network. Finally, the third example “Trust
Sample 3” (marked in blue) highlights a systems administrator as he logs onto a
production server from his workstation using rlogin and performs a series of hops
to a trusted production server in an isolated network. The third example is very
similar to the first example except that it shows that trusted relationships are
being established between servers, even in isolated networks. The problem with
the approach in example 3 is that trust relationships are being established in a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 4

network that is supposed to have greater restrictions than the CIN portion of the
network. If a host in the isolated network were to be compromised, the
established trust relationships could easily allow unauthorized access to hosts
within the CIN portion of the network.

Problem Identification
As previously identified and determined by the internal audit team, excessive use
of server based trust relationships have introduced an unnecessary level of risk
that requires corrective action. According to ITU-T X.509, Section 3.3.54 trust is
defined as follows: “Generally an entity can be said to trust a second entity when
the first entity makes the assumption that the second entity will behave exactly as
the first entity expects” (Andert, p2).

A trusted relationship is created when the normal standard password-based user
authentication mechanism is bypassed. A trusting server will allow users to
access or run commands on the local server from a remote host without having
to supply a password (Cole, p41). The remote authentication procedure
determines whether a user from a remote host should be allowed to access the
local system with the identity of a local user. Authentication is then granted or
denied based upon policies explicitly set to allow users to use remote privileges
without verifying their credentials (password).

Within the UNIX platform there exists a set of commands know as the “r-
commands”. The name for these commands is derived from the fact that each of
the commands begins with the letter “r”. The list of commands is rcp (remote
copy), rsh (remote shell), rexec (remote execute), rdist (remote distribution) and
rlogin (remote login) (Gregory, p169-170). Trust for a server, using the “r-
commands”, is controlled by two files, the /etc/hosts.equiv and $HOME/.rhosts
files. The /etc/hosts.equiv file controls trust behavior on a global or system level
and may be superseded by the existence of a .rhosts file in the users home
directory. Entries in these files are of two forms, positive entries grant access
while negative ones deny access. When a user first tries to connect to a trusted
host, using one of the “r-commands”, the “r-command” checks the
/etc/hosts.equiv file first then the local users .rhosts file, the exception being the
root account which only checks the root .rhosts file (Cole, p41). Authentication
succeeds when a matching positive entry is found. Authentication fails when the
first negative entry is found or if no matching entries are found in either file.

File Configurations
The .rhosts and /etc/hosts.equiv files are formatted as a list of one-line entries.
Negative entries are differentiated from positive entries by a “-“ character
preceding either the hostname or username field. The use of the special
character plus “+” can be used in place of either the hostname or username fields
or both. The “+” entry acts a wild card character and would match any known
hosts or users. In general, the format for these files is:

Syntax: hostname [username]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 5

While the .rhosts and hosts.equiv files have the same file format, the same
entries in each file have different effects. The following sample of a hosts.equiv
file, from the host spaceball2, will be used to demonstrate some typical entries
and their impact to a system. In addition, the sample will be further explained to
illustrate the differences between hosts.equiv and .rhosts files. (Authentication for
Remote Logins, docs.sun.com):

 A single entry for a host in the hosts.equiv file means that users from that host
are considered trusted and will be granted access to the system with the
same user name that they have on the remote system. In our example, the
first statement creates trust for all users with local accounts coming from the
remote host spaceball. If the user smith was doing an rlogin from the remote
host spaceball and smith had a local account on the target host (spaceball2),
that user would be granted access without supplying a password.

The syntax and functionality for single host entries are the same for both
hosts.equiv and .rhosts files.

 If the user name is also specified along with the host name then the host is
trusted only for the specified user. However, if the hostname/user format is
used in the hosts.equiv file, the specified remote user will be allowed access
as any local user on the system. In our example, the second statement
creates trust for the user barf from the host spaceball3. In this example the
user barf would be granted access to the target host (spaceball2) as any local
user, including such accounts as sys, nobody and lp.

The hostname/user format can also be used in .rhosts files. Unlike the
hosts.equiv file, specifying a user name in a .rhosts file only allows the
specified remote user access to the target system as the local user who has
the entry in the .rhosts file. For example, if the user barf had a local .rhosts file
in their home directorywith an entry of “spaceball lonestar”, this would allow
the user lonestar from the host spaceball access to the barf account.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 6

 The use of a plus “+” character can be used in place of the hostname and will
act as a wild card that will match any known host. The third statement in our
example uses the “+” character to allow the specified user lonestar access to
the target host (spaceball2) as any local user and from any hosts.

The syntax and functionality for using the “+” entries are the same for both
hosts.equiv and .rhosts files.

 If a netgroup name is preceded by a plus sign (+) then all the hosts or users
in that netgroup are considered trusted. If the netgroup name is preceded by
a minus sign (–) then all hosts or users in that netgroup are considered not to
be trusted. In the four statement of our example, trust is established for all
hosts and all users who are a member of the admin netgroup. In the fifth
statement of our example, all users of the netgroup helpdesk would be denied
access from all hosts.

The syntax and functionality for using the netgroup entries are the same for
both hosts.equiv and .rhosts files with one exception. Negative entries only
apply to hosts.equiv files and may be superseded by .rhosts entries in users
home directories.

The above example demonstrates how individual statements can be configured
to grant or deny access and the impact they have on a system. However, it is
also important to consider the effect that the interaction of these statements can
have on systems as a whole. The reality that multiple statements will exist in a
single hosts.equiv file enforces the need to fully understand the interaction of
these statements and the order in which they should be placed within the file.
The order of the entries in the hosts.equiv file is important especially when both
positive and negative entries exist. The search order is most critical when using
the username field to specify one particular user, groups of users and especially
when using the “+” sign (hosts.equiv(4), docs.sun.com). To further illustrate, take
our original example of an /etc/hosts.equiv file and look at the second entry that
reads “spaceball3 barf”. As we discussed earlier, this example allows the user
barf to login as any local user to the host spaceball2 without out supplying a
password. However, say the user barf is member of the helpdesk netgroup. As
seen in our example, the last statement “+ -@helpdesk” should deny access
from all hosts to all users that are a member of the helpdesk netgroup. However,
due to the order of which the statements are found in the hosts.equiv file the user
barf will not be restricted because a positive match for the user barf would occur
before the entry denying access.

File Permissions and Ownership
Appropriate file permissions and ownership must be enforced on root .rhosts,
/etc/hosts.equiv and .rhosts files in users home directories ($HOME/.rhosts). If
appropriate permissions are not enforced it could allow unauthorized users to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 7

view or modify these files to grant levels of unauthorized access. Permissions of
root level .rhosts and /etc/hosts.equiv files are especially critical because of their
ability to effect the system globally and grant the ability to gain access to the root
account. Additionally, if a system were compromised, information contained
within in these file would provide helpful information to an attacker about other
systems and users that are trusted within the network. Ensuring correct file
permissions and file ownership of root .rhosts and /etc/hosts.equiv files would at
least ensure that an attacker would have to gain root level access to view or
make modifications to these files. For instance, the following example would not
be an uncommon set of permissions for the /etc/hosts.equiv file. However, having
the ability view the contents of this file by non-root users could reveal trusted
user and system information to an attacker.

Example: -rw-r--r-- 1 root other 64 Feb 7 15:22 hosts.equiv

Permissions that would be better suited to ensure that root .rhosts and
/etc/hosts.equiv files are not viewable by non-root users would be to ensure that
the file is owned by the user root and set to read-only as in the following
example.

Example: -r-------- 1 root other 64 Feb 7 15:22 hosts.equiv

File permissions of .rhosts files in users home directories are equally important in
order for “-r-commands”, like rlogin, to work correctly. As a feature, the user who
is attempting to perform the rlogin must own the .rhosts file. For example, if the
user smith wanted to maintain a .rhosts file in his home directory that file would
have to be owned by the user smith.

Auditing and Validating Established Trust
The problem with establishing trusted systems is that trusting another system
has implications beyond the interactions between the local system and the
trusted remote system. Inevitably, trust operates in a transitive fashion and
auditing or validating the relationships that form between systems becomes
difficult. The following example illustrates how trust is transitive.

Example: Trust is Transitive
If the administrator of server A trusts server C, and the administrator for server B trusts server C,
then it is a reasonable assumption that server A trusts server B.

Server A Server CServer B

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 8

It is critical to fully understand the extent to which trust has been granted both
intentionally or unintentionally. Using the above example, the administrator of
server A did not directly extend trust to server B. However, trust has been
established indirectly because server B trust server C.

Identified Vulnerabilities
The establishing of trust-based relationships between servers should be
discouraged and the “r-commands” that support them prohibited. The use of the
“r-commands” should be prevented because of the weak authentication
mechanisms that they employ. The weak authentication mechanisms allow users
the ability to gain access or run commands on remote servers without having to
supply passwords. In addition, even if all precautions and hardening techniques
are applied, meaning users are forced to supply passwords, the “r-commands”
them selves still transmit data via clear text protocols. The use of clear text
protocols makes the data transmitted between the user and the server vulnerable
to any one on the network who may be eavesdropping with something as simple
as a network sniffer like snoop. Information obtained via these methods could be
used to gain unauthorized access and control of hosts and user accounts,
including root.

The following examples illustrate the vulnerabilities that are associated with the
use of “r-commands” and just how simple it is to gain user account information
from the network. The information in this example was captured during an rlogin
attempt from the remote host 192.168.101 to the target host spaceball2 using the
network sniffer snoop. To ensure that the user attempting the rlogin was forced
to enter a password no /etc/hosts.equiv or .rhosts entries existed. The exact
command and an explanation of the arguments used to capture this information
are as follows in examples 1 and 2:

Example1: Capturing Network Traffic

root# snoop -d elxl0 -o snoop.txt

Table 1A: Explanation of Snoop command arguments
Argument Explanation

-d Specifies the network interface to snoop on. In our case it is
the interface elxl0

-o Saves the output of the snoop command to a text file. In our
example the output is sent to a file called snoop.txt

Example2: Read in Output from Text File

root# snoop -i snoop.txt

Table 1B: More Snoop command arguments
Argument Explanation

-i Display the output from previously captured network traffic. In
our example input is read from the text file snoop.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 9

Example3: Excerpt of output from snoop session:

5 0.76556 192.168.1.101 -> spaceball2 RLOGIN C port=1023
6 0.00038 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
7 0.00010 192.168.1.101 -> spaceball2 RLOGIN C port=1023
8 0.00008 192.168.1.101 -> spaceball2 RLOGIN C port=1023
9 0.00012 spaceball2 -> 192.168.1.101 RLOGIN R port=1023

10 0.00008 192.168.1.101 -> spaceball2 RLOGIN C port=1023 root\0barf\0xterm/3840
11 0.00013 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
12 0.02447 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
13 0.00013 192.168.1.101 -> spaceball2 RLOGIN C port=1023
14 0.03829 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
15 0.00007 192.168.1.101 -> spaceball2 RLOGIN C port=1023
16 0.00008 192.168.1.101 -> spaceball2 RLOGIN C port=1023
17 0.01968 spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Password:
18 0.03943 192.168.1.101 -> spaceball2 RLOGIN C port=1023
23 0.07637 192.168.1.101 -> spaceball2 RLOGIN C port=1023 d
24 0.04240 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
25 0.45594 192.168.1.101 -> spaceball2 RLOGIN C port=1023 o
26 0.04416 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
27 0.07018 192.168.1.101 -> spaceball2 RLOGIN C port=1023 o
28 0.04969 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
31 0.28337 192.168.1.101 -> spaceball2 RLOGIN C port=1023 r
32 0.04477 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
33 0.40109 192.168.1.101 -> spaceball2 RLOGIN C port=1023 o
34 0.04892 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
35 0.05546 192.168.1.101 -> spaceball2 RLOGIN C port=1023 p
36 0.04448 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
39 0.02257 192.168.1.101 -> spaceball2 RLOGIN C port=1023 e
40 0.04545 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
41 0.11066 192.168.1.101 -> spaceball2 RLOGIN C port=1023 n
42 0.04937 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
43 0.53565 192.168.1.101 -> spaceball2 RLOGIN C port=1023
44 0.00076 spaceball2 -> 192.168.1.101 RLOGIN R port=1023
45 0.00011 192.168.1.101 -> spaceball2 RLOGIN C port=1023
46 0.03020 spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Last login: Mon Jan
47 0.00014 192.168.1.101 -> spaceball2 RLOGIN C port=1023
48 0.04748 spaceball2 -> 192.168.1.101 RLOGIN R port=1023 Sun Microsystems
49 0.00013 192.168.1.101 -> spaceball2 RLOGIN C port=1023
50 0.05786 spaceball2 -> 192.168.1.101 RLOGIN R port=1023 barf@spaceball2$
51 0.00012 192.168.1.101 -> spaceball2 RLOGIN C port=1023

The above example, example 3, has been broken into three parts to demonstrate
the components of the rlogin attempt. In Part 1, you can see that an rlogin
attempt to the user account barf was initiated from the source host at address
192.168.1.101 to the target host spaceball2. If the local user account barf exists
on the hosts spaceball2 then a return prompt from the host spaceball2 will be
sent to 192.168.1.101 requesting a password. In Part 2 of this example, you can
see the response from the user at hosts192.168.1.101 reply back with a
password of dooropen for the user barf. If the password supplied by the user is
correct then the rlogin will succeed for the user barf and the user will be
presented with a prompt as seen in Part 3 of this example.

This brief example was a simple depiction of the type of information that when
transmitted via clear text protocols can be captured from the network. You can
imagine the consequences and severity of the problem if information for the root
account were captured and then used to gain unauthorized access to a host. The
ability to gain root access combined with the establishment of trusted hosts
further emphasizes the risks associated with establishing trust relationships and
provides greater justification for discontinuing their use.

ParPart 1

Part 2

Part 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 10

Identified Risks
The use of .rhosts files and hosts.equiv files in conjunction with the “r-
commands” creates a high level of risk because it could allow unauthorized
access to user accounts including root, in addition to, allowing an attacker to gain
unauthorized control of hosts within the enterprise. The risks that were identified
are as follows:

 Inappropriate file permissions on root .rhosts, /etc/hosts.equiv and .rhosts in
users home directories ($HOME/.rhosts) could allow unauthorized users to
view or modify these files to gain unauthorized access.

 Incorrectly configured .rhosts and hosts.equiv files could grant excessive
privileges (including root) to unauthorized users.

 A user ultimately controls .rhosts files in their home directory and could create
a .rhosts file that grants access to whomever the user chooses without the
system administrator's knowledge.

 Auditing and validating the trust relationships that exist and the extent of the
privileges they grant is difficult because trust is transitive.

 The protocols used by the “r-commands” transmit data across networks in
clear text making it easy to capture and use to gain unauthorized access.

The following examples give further illustration of the power and risks that trust
configurations can introduce into an environment. The examples show how
certain configurations combined with the use of wild cards, as previously
discussed in the Problem Identification section, can easily create trust
relationships that trust every host and user including root (Clayton, p1):

Example 1:
The remote host spaceball has just a sole “+” entry within its local root level rhosts file
(/.rhosts). Anyone user who has access to the root account on any workstation can read
and write with rcp to the trusted host. An intruder could pull the password file, edit it and
put it back without leaving much of trace of the activity.

Example 2:
The remote host spaceball has “+ +” contained within its local root level rhosts file
(/.rhosts). This entry allows any user from any machine to login into the host spaceball as
the user root without a supplying a password.

Example 3:
The remote host spaceball has within its /etc/hosts.equiv file has the entry ``lonestar +''.
Here any user on the host lonestar can login as any other user on the host spaceball
without having to supply a password.

The risks of trusted hosts have been well documented and it is understood as an
industry best practices that these configurations should be avoided. To further
illustrate the point on the dangers of these configurations, it was the notorious
hacker Kevin Mitnick who exploited the weaknesses of trust relationships and the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 11

“r-commands” in a successful attack against NEC cooperation. In that attack
Kevin Mitnick used the finger command to identify a logged on user. A phone
number was give as contact information from the output of the finger command.
Kevin then contacted that user and convinced him to create a .rhosts file for him
as part of some testing that he was conducting. Once the user created the rhosts
file Kevin was able access that host and others within the NEC network
(Goodwin, p1).

Existing Controls
In the original state of the environment, there were no centralized or standardized
controls to govern the usage, monitoring of file contents or creation of root level
.rhosts and /etc/hosts.equiv files. Additionally, there were no automated methods
to ensure that the file permissions of those files were sufficient to prevent
unauthorized modification. System administrators were not held accountable for
the entries that were added to those files or for the monitoring of the privileges
that occurred as a result of those established trust relationships.

Further complicating the situation was the division of responsibility for
established trust relationships between two separate operational groups within
the organization. The UNIX engineering team was tasked with the responsibility
for configuration files that impacted a server at the global level (/etc/hosts.equiv)
and the user files associated with the root account (/.rhosts). A second
operational group within the organization, Data Security, was tasked with the
responsibility for managing all users accounts and associated user files at that
level ($HOME/.rhosts).

Self-Identified Gaps
A quick self-assessment of current process and procedures revealed that current
controls were not effectively mitigating any of the risks posed by trust
relationships. In most cases there was a lack of documentation and general lack
of awareness by administrators and end users to what was trusted, by whom and
for what reason. The absence of sufficient controls resulted in the following self-
identified gaps:

 No accurate method for verifying and identifying all established trust
relationships.

 No controls exist to ensure correct file permission on existing hosts.equiv and
.rhosts files.

 No controls exist to validate the creation or deletion of hosts.equiv and .rhosts
files.

 No controls exist to validate or report the contents of hosts.equiv and .rhosts
files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 12

 No documentation exists to govern and standardize the use or prohibit the
use of hosts.equiv and .rhosts files.

 No real time notification existed when one of these files is changed

Changing of The Environment: The During

Plan of Attack
As a member of UNIX engineering team I was the lead engineer tasked with
responding to the audit findings and self identified gaps. As a starting point, a
brain storming session was held with other engineers from the UNIX engineering
and data security teams. This session identified six objectives to address the
trust relationships and the identified gaps. The objectives, to be addressed in a
phased approach, include identification, assessment, documentation,
development, implementation and monitoring.

Identification of Trusted Hosts
The first step towards remediation and mitigation is identification. The scope of
the problem had to be defined prior to us moving forward with any kind of
corrective actions. One of the greatest challenges, working in an environment
this large, was how to leverage the existing resources, technology and people, to
obtain the required information. Ideally we wanted to avoid a situation where
every systems administrator would have to log onto a server, look for specified
conditions and send back a report. That type of process would be inefficient
because it would require large amounts of time on the part of the administrator in
addition to wasted effort by myself to correlate that information into a meaning full
report. It was also reasonable to assume that this process would be repeated
with regularity in the future, making it all the more important to develop an
efficient mechanism from the beginning.

To accomplish this data collection task a few lines of code were added to an
existing Korn shell script, that serves as one piece of an already existing in house
configuration management compliancy tool. This tool runs on all Solaris servers
on a daily basis. The additions to this script included new statements that used
the UNIX find command with various arguments to identify .rhosts and
/etc/hosts.equiv files on a per server basis. Once the changes were added to the
Korn shell script, the new version of the script was propagated out to all serves in
the enterprise via a pre-existing automated distribution method using NFS and
SSH. After distributing the script throughout the environment, the script was run
on all servers and the returned values were sent via an automated email to a
centralized web server. Once all reports were run on all servers and delivered to
the web server another in house script automatically correlated the individual
server reports into one large report that was sorted by server name (More details
on the in house scripts and web server will be addressed in the implementation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 13

section of this paper). The following statements are examples of what was used
to identify all .rhosts and hosts.equiv files (Logging In to a Remote System,
docs.sun.com):

Example1: #find / -name .rhosts -follow -exec ls -l{} >> $RESULTS
Example2: #find /etc -name hosts.equiv -follow -exec ls -l{} >> $RESULTS

Table 2: Explanation of Find command arguments
Argument Explanation

/ or /etc Identifies the path to a directory where the search is to begin.

-name Identifies the filename to be searched for. In this case it is
either .rhosts or hosts.equiv.

-follow Causes the underlying file of a symbolic link to be checked
rather than the symbolic link itself.

-exec rm {} Tells the find command to apply the ls command to all files
identified using the matching filename.

>> Redirects the output of the find command and appends it to a
file.

$RESULTS A variable used to define a text file that is used to capture the
output of these statements

Note: These statements were part of a larger script which checked for more conditions
than were related to this project. The overall contents of the file defined by the
$RESULTS variable were sent to the centralized web server using mail.

The initial run of the security script revealed the full scope of the problem by
identifying in excess of 500 instances of .rhosts and /etc/hosts.equiv files.

Assessment of Risks
The responsibility for the assessment of risks and vulnerabilities of previously
identified .rhosts and hosts.equiv files will be divided between the two operational
divisions in the organization. The assessment by the UNIX engineering services
teams determined that the level of risks posed by currently established trust
relationships at the systems and root level to be high. The data security team,
responsible for user level configuration files and access, also determined the
level of risk for user level .rhosts files ($HOME/.rhosts) to be high. The risk rating
of high was determined from the following risks and vulnerabilities that could
allow unauthorized access and control of hosts and user accounts, including root,
within the corporate network.

 Inappropriate file permissions on root .rhosts and /etc/hosts.equiv files could
allow unauthorized users to view or modify these files to gain unauthorized
access. As detailed in the File Permissions and Ownership part of the
Problem Identification section, correct permissions and ownership of .rhosts
and /etc/hosts.equiv files are essential to limiting the amount of information
that can be obtained by non privileged users. The ease in which excessive
privilege can be granted system wide, to non-authorized users or systems,
based simply on incorrect file permissions contributed to risk rating of high.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 14

 Incorrectly configured .rhosts and /etc/hosts.equiv files could grant excessive
privileges to unauthorized hosts and users including root. As discussed in
detail in the File Configurations part of the Problem Identification section,
proper file entries are critical to ensure that desired levels of privilege are
being granted or denied. The ability to use the wild card character “+” to grant
broad levels of systems wide access with a single entry in combination with
incorrectly configured files contributed to the risk rating of high.

 Users ultimately have the control to create and modify .rhosts files in their
home directory. With that control users are able to grant access to their local
account to other users without the system administrator's knowledge or
consent. Appropriate file permission, as discussed in File Permissions and
Ownership part of the Problem Identification section, are essential for the “r-
commands” to operate successfully. The ability of a user to grant privileges to
other users without prior approval contributed the risk rating of high.

 The fact that trust operates in a transitive fashion means that privileges can
be indirectly granted to systems and users that were not intentionally desired.
As described in the Auditing and Validating Established Trust part of the
Problem Identification section, the impact that directly trusted hosts can have
on other non-trusted hosts contributed to the risk rating of high.

 The protocols used by the “r-commands” transmit data across networks, in
clear text, which can be easily captured and used to gain unauthorized
access and control of hosts and users including root. As previously
demonstrated, in the Identified Vulnerabilities section, user login information
is easily captured and could be used by an attacker. The information gathered
from the network could be used to exploit other hosts and users including
root. The ability to capture user login information directly of the network
contributed the risk rating of high.

The data security team conceded that even though risks do exist, they were
willing to accept those risks and permit .rhosts files at the user level in a limited
capacity. The decision to continue to allow limited usage of user level .rhosts
files was made because no immediate alternative solution for end users existed
or would not be readily available within the time constrains of this project. Trust
functionality needs to exist for certain application and user accounts that utilize
the “r-commands” for functions such as batch processing jobs and application
management tasks, similar to Trust Sample 2 in Figure2: Example Trust
Relationships. Additional process and procedures will be put into place to assist
in mitigating the risks that will continue to exist. A risk assessment report was
drafted outlying the identified risks. Management with the understating that an
alternative solution would be fully adopted in the future accepted the identified
risks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 15

Development of Corrective Actions
Corrective actions were divided into two critical areas, remediation and mitigation
with an emphasis on using Secure Shell as the desirable replacement for the “r-
commands”. The role that Secure Shell will serve along with its inherent benefits
will be addressed in the next sections Using Secure Shell and Implementation of
Corrective Actions.

Actions for Remediation
The goal of remediation was to remove the risks that resulted from trust
relationships that were established, at the root and systems level, as a means of
convenience for systems administrators, application owners and end users that
were not required for valid business operations. As part of the remediation
process the following corrective actions will be taken:

 Usage of root level .rhosts files (/.rhosts) and hosts.equiv (/etc/hosts.equiv)
files will be prohibited. The files must exist and remain null (file size of zero)
with the files being owned by root and permissions set to 400 (read only by
root).

Example: -r-------- 1 root other 0 Sep 27 10:25 .rhosts

Example: -r-------- 1 root other 0 Sep 27 10:25 /etc/hosts.equiv

The decision to maintain these files as opposed to there out right removal
was based on trying to ensure that a user other than root could not create
these files. While it was understood that the file permissions of the underlying
file system should prevent the creation of these file by non-privileged users,
the solution that generated the most support by management and by the
system auditors was to maintain these file and enforce the above-mentioned
restrictions in addition to monitoring for variances to the new standard

 Implementation of a documented standard outlying the restrictions that
systems will need to comply too.

If any of the previously defined trust relationships cannot be removed and must
exist in some capacity to fulfill a business need it will be addressed as part of the
mitigation process. However, the level of privilege still cannot exist at the root
level or at the systems level. The privilege must be reduced to the user level by
replacing the /etc/hosts.equiv and root .rhosts entries with equivalent entries in
users .rhosts files within their own home directories.

Actions for Mitigation
The goal of mitigation was to reduce the risk of trust relationships that continued
to exist after the remediation phase had completed. The following courses of
action will be taken as part of the mitigation process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 16

 Provide education and general awareness to the systems administrators,
application owners and end users of the risks that these configurations
create.

 Provide alternative solutions using Secure Shell (SSH) to achieve the same
type of functionality that the original “r-commands provided”. Additionally,
provide assistance in configuring SSH and help with explanations as to how
and why SSH is a better solution. Further details on the benefits and features
of Secure Shell will be discussed in the next section, Using Secure Shell.

 Data Security acknowledges that risk will continue to exist if user level .rhosts
files are still to be permitted, even in a limited capacity. To mitigate those risks
data security will enforce strict permissions on .rhosts files, monitor the
contents of those files by looking for “+” characters and server names that are
not fully qualified. Data security will also create a follow up process for
contacting users when deviations are detected and provide assistance for
correcting or finding alternative solutions. Data Security will also retain the
authority to remove or enforce standards on entries as needed without user
consent.

Using Secure Shell (SSH)
SSH is software approach to network security that is based upon the client/server
architecture. SSH allows users to securely access remote hosts by providing
transparent end-to-end encryption between the client and the server without
interaction from the end user. Although the name would suggest that SSH is a
shell, like Bourne or C shell, it actually is not a shell at all. SSH is a protocol that
specifies how to conduct secure communication over a network. SSH creates a
tunnel, using client and server programs, for running a shell on a remote
computer and works in a similar manner to the UNIX command rsh. The distinct
difference between rsh and SSH is that SSH provides the end-to-end encryption.
In addition to the secure transmission of network traffic, SSH also provides
authentication using passwords and public keys (Barrett, p2-4).

Secure Shell, for the purposes of this project, will be used as the desired tool for
the replacement of the UNIX “r-commands”. SSH provides several direct
replacements for the “r-commands” that will allow for secure remote logins,
securely coping files between two hosts and running remote commands securely
on a remote host. The SSH alternatives to rsh, rlogin and rcp are ssh, slogin,
and scp respectively and use very similar syntax to the original “r-commands”.
The use of similar syntax will further help to ease the learning curve for the new
secure commands.

The authentication mechanisms supported by SSH are also of particular interest
for this project. SSH supports authentication in two forms: password and public
keys. If password authentication is used, it works in the same manner as the
conventional “r-commands” except that user name and password information is
encrypted prior to sending it across the network. The second method of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 17

authentication, public keys, provides the very usefully benefit of not having to
supply a password and would eliminate the need for the .rhosts and
/etc/hosts.equiv files. A key is a digital identity that is composed of a unique
string of binary data (Barrett, p26). The use of public keys allows for remote
logins or execution of commands on a remote host with out having to supply a
password while still being able to verify the identity of the user making the
request. To verify identity SSH uses two parts, the private key and the public key
to create what is referred to as a key pair (Barrett, p204). The private key is very
important and should never be disclosed because an attacker who obtains your
private key can gain access to systems using your identity. The private key is
used by your SSH clients to prove your identity to an SSH server. The public
key, on the other hand, does not need to be kept a secret and can be freely
distributed into your user accounts for the systems you wish to access remotely.
If an attacker were to obtain your public key, unlike the private key, they would be
unable to access systems with your identity. Before using key based
authentication the key pair must first be generated using the ssh-keygen program
(Please see the note at the end of this section for references on SSH and key
generation). Once the private key, your identity that resides on your client, and
the public key, which resides on the server machine, have been generated you
are then ready to do authentication via public keys.

Note: Additional reference for SSH can be found using the book “SSH The
Secure Shell” by O’Reilly. Also, additional information on the configuration of
public and private keys can be found at:
http://www.unixpeople.com/HOWTO/configuring.ssh.html

Development of Supporting Documentation
A new documented standard was developed to govern the usage of the files that
establish trust-based relationships. Using templates and information found on
SANS website (http://www.sans.org/resources/policies/) a new standard was
written to govern the usage of trust-based relationships and the files that support
them.

Highlights of Standard
 No use of .rhosts files should be found at the root level (/.rhosts) and no use

of hosts.equiv files should be found in the /etc/ directory. These files should
exist and be null with file permissions of 400 and owned by the user root.

 Monitoring procedures will be implemented to monitor for any usage of
/.rhosts and /etc/hosts.equiv files on a daily basis. Results of the monitoring
will be made available to system administrators daily with a summary report
listing any findings being generated and reviewed monthly by management.

 If an occurrence is identified, the systems administrators will be notified by
means of the configuration compliancy tool, responsible for providing the
explanation for its use and for discontinuing its use or converting to one of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 18

two acceptable solutions (SSH or local user level rhosts files,
$HOME/.rhosts).

Note: Although the original standard could not be used in this article, a
sanitized copy of the original is located in Appendix A.

Implementation of Corrective Actions
To identify trusted hosts we settled on the idea of using existing automated home
grown tools to identify and report on a per host basis the information on root level
.rhosts and /etc/hosts.equiv files. Within the current environment every server
deployed will have a mounted static copy of a filesystem that is common to all
servers. The static filesystem is then updated on a regular basis through a
combination of rsysnc and Secure Shell. Within this common file system, there
exist a compilation of scripts and programs that constitutes a homegrown
compliancy monitoring systems that reports to an internal web page. This internal
web page is the primary interface between a systems administrator and the
servers that they manage. The web page reports on log events, running
processes, overall system health and deviations against imposed configuration
standards. It is because of this functionality that we choose this existing tool to
assist in our risk remediation and mitigation efforts.

Remediation Phase
The first phase of implementing corrective actions was the remediation phase in
which all entries were removed from root level .rhosts files and /etc/hosts.equiv
files. Systems administrators were given notice by email of all the established
trust relationships on the servers they were responsible for managing. Also,
appropriate change control requests were requested and approved by the
enterprise change management board. The change control approval was
required before systems administrators could begin making the required
changes. A timetable of two weeks was allotted to have the changes completed
for all 450 plus servers in the environment. During the two-week interval the
following actions were conducted:

 A documented standard was implemented and communicated to
administrators, business areas and end users. The information was presented
in the form of email and by communicating the new changes during weekly
team meetings. The documented standard was also published on an internal
web site along with other documented standards, procedures and polices.

 Systems administrators made the necessary configuration changes, removing
entries in root .rhosts and /etc/hosts.equiv files, during approved maintenance
windows. Assistance was provided to administrators who required assistance
with the alternative solution Secure Shell and configuring user level rhosts
files. Secure Shell as a solution offers similar functionally to the UNIX
“r-commands” and provides transparent end-to-end encryption of network
traffic between hosts. In addition, the convenience that “r-commands”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 19

provided by not having to supply passwords can be achieved in a more
secure fashion with the use of SSH and host-based keys. For more details on
how SSH works as a solution and the benefits it provides, consult the Using
Secure Shell section of this paper.

At the end of the two-week time period a report was run, equivalent to the one
used in the identification phase, and the results reviewed. Analysis of the report
showed less than five servers out of the approximated 450, to be out of
compliance. Those remaining servers were addressed on an individual basis to
achieve compliance.

Mitigation Phase
The second phase of implementing corrective actions was the mitigation phase in
which all-remaining .rhosts files, only user level .rhosts should be left, were
addressed. The efforts of data security were mostly directed in the area of user
.rhosts files. Not being a member of the data security, I was not as involved in
the details or the actual “hands-on” portion of this phase. However, the details of
the actions that were taken are outlined here:

 Provide education and general awareness to the systems administrators,
application owners and end users of the risks that these configurations create
in a manner similar to what was done in the remediation phase.

 Provided alternative solutions using SSH to achieve the same type of
functionality that the original “r-commands provided”. In addition, provide
assistance in configuring SSH and help with explanations as to how and why
SSH is a better solution.

 New user accounts that get created will have a .rhosts file created with the
permissions set to read-only (400) and null (file size of zero).

 Data security will enforce strict permissions on .rhosts files by monitoring for
any .rhosts file that is readable by “other” (read-only for the owner and group).

 The contents of .rhosts files will also be monitored for occurrences of “+”
characters and server names that are not fully qualified.

 Data security also created a follow up process for contacting users when
deviations are detected and to provide assistance for correcting or finding
alternative solutions.

 Data Security retains the authority to remove or enforce standards on entries
as needed without user consent.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 20

Compliancy Monitoring
Upon completion of the remediation and mitigation phases the environment now
possessed less risks than prior to the corrective actions. It is important to realize
that our efforts did not end after all the corrective actions had been completed. In
actuality a new living breathing process had been born that will continually need
to be addressed. Monitoring for compliancy of the newly imposed standard is a
very crucial step towards achieving long-term success. Management will use the
reports that are generated as a tool to gauge effectiveness of administrators and
to measure corporate wide compliancy to the newly defined standard. In addition,
effective compliancy monitoring is required to demonstrate to any follow up audit
teams the state of the environment at any given point in time.

The tool chosen for compliancy monitoring is an in house homegrown application
that is the central management tool used by systems administrators and
management to administer serves and to report on server statistics and
compliancy to standard configurations. The homegrown tool centers on an
apache web server and a compilation of shell scripts (Korn, Bourne and Perl) that
gather information from all the servers in the environment and provides that
information in a graphical representation to the web server. The details and
intricacies of this tool are too vast to go into detail for the purposes of this paper.

Compliancy for trust relationships at the root and systems level will be checked
daily on a per server basis as required to fulfill imposed corporate reporting
requirements. Administrators will be alerted, via an online notification, of any
deviations from the imposed standard and will be tasked with the appropriate
corrective actions as outlined in the standard. Failure to correct any deviations
will be reflected in monthly summary reports, required by management, that
outline compliancy to all imposed standards. The reports sent to management
will be used as a tool to measure success in achieving compliance to imposed
standards and the effectiveness of administrators in resolving any deviations.

As part of the daily monitoring process a new routine was added to an already
existing shell script to ensure that permissions on root .rhosts files and
/etc/hosts.equiv files were correct. The new routine ensures the user root with a
group of other always owns these files. The shell script also ensures that the files
permissions are set to read-only by the root user (permission of 400). In addition,
a software check was put into place to make sure that the file size is always zero
(null). If any one of the files has a size other than zero it is reported and a
notification is sent to the applicable systems administrator noting that follow up
action is required. An excerpt of the compliancy shell script that deals with trust
files and an explanation of the statements within the routine are shown in the
following example:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 21

Example1: Excerpt from Compliancy Shell Script
#--
Security Checks for Trust Files
#--
for FILE in ~/.rhosts /etc/hosts.equiv

do

if [! -f $FILE]
then

/usr/bin/touch $FILE
fi

/usr/bin/chown root $FILE >/dev/null 2>&1
/usr/bin/chgrp other $FILE >/dev/null 2>&1
/usr/bin/chmod 400 $FILE >/dev/null 2>&1

if [-s $FILE]
then

echo "\n$FILE should be empty:" >> $RESULTS
/usr/bin/ls -lL $FILE >> $RESULTS

fi

done

The for loop routine in this example is just one part of a much larger script
that checks for more conditions then related to this project. The structure
of the for statement will allow for each of the statements contained within it
to be executed for each of the specified files. Part 1 of this example
checks to ensure that the files .rhosts and hosts.equiv exist. If the file does
not exist it is created. In the second part of this routine, Part 2, The UNIX
commands, chown, chgrp and chmod will be used to ensure proper file
permissions and file ownership with any output and standard error being
directed to /dev/null. Part 3 of the example checks to make sure the files
.rhosts and hosts.equiv have a file size of zero (null). If the file is not
empty a notification is sent to the systems administrator indicating
corrective action is required.

Note: These statements were part of a larger script which checked for more conditions
than were related to this project. The overall contents of the file defined by the
$RESULTS variable were sent to the centralized web server using mail.

Compliancy for trust relationships at the user level will be checked monthly on a
per server basis by a script written by the data security team. A member of the
data security team will notify users who are found to be in violation of the
imposed standard. Users will be responsible for correcting the problem or
requesting assistance, if needed, from data security. Monthly summary reports,
as required by data security management, will outline compliancy to all imposed
standards and will be used to track compliancy over time.

Part 2

Part 1

Part 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 22

New State of The Environment: The After

Success or Failure
The project was a success as we addressed the deficiencies identified by the
internal audit team and the gaps from the self-assessment in the time that was
allotted for this project. The original state of the environment had approximately
500 wrongfully configured or misused .rhosts and .hosts.equiv files. As a result of
our efforts and addressing the project in a phased approach we were able to
identify and assess the risks, determine the full scope of the problem, develop
and implement solutions that allowed us to successfully eliminate root level
.rhosts and /etc/hosts.equiv entries to the extent that only about a half dozen
remained that would have to be addressed on an individual basis. We were
equally successful in leveraging existing tools and processes to implement
effective compliancy monitoring procedures to ensure long-term compliancy to
the new standards. The removal of unnecessary entries, about 90 percent of total
number, dramatically reduced the level of risk to the environment prior to our
efforts. Pushing the level of privilege of trusted relationships to the user level and
or using alternative solution like Secure Shell further reduced the level of risk.
The use of SSH will ultimately allow for the complete elimination of user level
.rhosts files and the eventual disablement of the “r-commands”.

Remaining Gaps and Risks
Upon completion of this project some gaps and risks continued to exist even after
corrective actions were completed. The remaining gaps and risks were identified
as:

 Users are still permitted to use and control .rhosts files in their home
directories ($HOME/.rhosts)

 No method for receiving real-time alerts when a change is made to .rhosts or
hosts.equiv files. Some form of event based notification solution will have to
be evaluated in the future.

 Secure Shell (SSH) is not fully adopted throughout the environment. Without
having SSH fully adopted throughout the enterprise it was not feasible to fully
prohibit users from using “r-commands” and their need for .rhosts files. The
complexity of the environment will make it difficult to ensure SSH is available
for all platforms and versions.

 The “r-commands” are still available for use even if .rhosts and hosts.equiv
files are not used. The risk that this present is that although users are forced
to supply a password the information is still transmitted via clear text
protocols. SSH is a suitable replacement for this situation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 23

Assessment of Remaining Gaps and Risks
Although risks and some gaps still existed after completion of the corrective
actions a follow up by the internal audit team concluded that the level of risks to
the environment had been reduce to a sufficient level and that satisfactory risk
remediation and mitigation had been done to improve the overall security posture
of the environment.

The only way to fully mitigate the risks posed by trusted relationships and the “r-
commands” would be to not permit their use. However, that is easier said then
done and in most cases improving the security of an environment becomes a
balancing act of required functionality and the time and cost it takes to implement
improved security measures. In our particular instance the ideal solution would
be the full adoption of Secure Shell. Secure Shell would take the place of the “r-
commands” and would allow them to be disabled through the plugable
authentication module (PAM) or completely removed from the operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 24

Appendix A: Standard for Trust Relationships

Company Confidential

Computer & Network Operations
Definition of Standard

Standard: CNO-SD001
Trust Relationships
Policy Ref#: SEC-PL001

Last Revision April 24, 2003

Purpose
The purpose of this standard is to establish guidelines and procedures for the base configuration of
internal server equipment that is owned and or operated by Acme Corporation. Effective
implementation of this standard will minimize unauthorized access to Acme Corporate proprietary
information and technology and ensure compliance with established Acme Corporate policy.

Established Acme Corporate policy governing this standard can be obtained from the internal Acme
website. Located at http://www.acme.com/iss

Scope
This standard applies to server equipment owned and or operated by Acme Corporation, In addition to
any servers registered under any Acme Corporation owned internal network domain.

Definition of Trust Relationship
A trusted relationship is created when the normal standard password-based user authentication
mechanism is bypassed. The remote authentication procedure determines whether a user from a
remote host should be allowed to access the local system with the identity of a local user.
Authentication is then granted or denied based upon policies explicitly set to allow users remote
privileges with out verifying their credentials.

Standard

Restrictions for /.rhosts files at the root level
Usage of any of the remote services (rlogin, rsh, rpc, etc) at the root level will be strictly forbidden. No
usage of /.rhosts files should found at the root level (/.rhosts).

Monitoring procedures will be implemented to monitor for any usage of /.rhosts files. A report listing
any findings will be generated and reviewed monthly. If an occurrence is identified the following actions
will be taken:

1. The applicable system administrator will be notified of the occurrence by management
2. The systems administrator will be responsible for providing justification for its usage.
3. The systems administrator will be responsible for providing a time frame for discontinuing

usage or for the conversion to a better practice.

Functionality for authentication of any of the existing remote services (rlogin, rsh, rpc, etc) should be
removed. There are two acceptable courses of action that need to be taken:

1. If the functionality is not required by the business area or the customer, then perform the
following (Preferred Course of Action):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 25

Remove all entries within the /. rhosts file.
Ensure that the ownership of /.rhosts file is root:other
Ensure that the permissions of the /.rhosts file is 400 (read by root only)

Example: -r-------- 1 root other 0 Sep 27 10:25 .rhosts

2. If the functionality provided by remote services is required by the business area or customer,
then one of the following courses of action must be taken:

An alternative solution must be implemented to replace the use of the remote services. SSH
may be a valid solution for meeting both the security requirements while at the same time
providing necessary functionality to the customer.

Reduce the level of privilege of the remote services by replacing the root level /. rhosts file with
an equal entry in the applicable users home directory. This solution should be used only if the
remote service is a business or customer requirement.

Restrictions for hosts.equiv files
Usage of /etc/hosts.equiv files will be strictly forbidden. No usage of /etc/hosts.equiv files should found
at the system level.

Monitoring procedures will be implemented to monitor for any usage of /etc/hosts.equiv files. A report
listing any findings will be generated and reviewed monthly. If an occurrence is identified the following
actions will be taken:

1. The applicable system administrator will be notified of the occurrence by management.
2. The systems administrator will be responsible for providing justification for its usage.
3. The systems administrator will be responsible for providing a time frame for discontinuing

usage or for the conversion to a better practice.

Functionality for authenticating any of the existing remote services (rlogin, rsh, rpc, etc) should be
removed. There are two acceptable courses of action that need to be taken:

1. If the functionality is not required by the business area or the customer, then perform the
following (Preferred Course of Action):

Remove all entries within the /etc/hosts.equiv file.
Ensure that the ownership of /etc/hosts.equiv file is root:other
Ensure that the permissions of the /etc/hosts.equiv file is 400 (read by root only)

Example: -r-------- 1 root other 0 Sep 27 10:25 /etc/hosts.equiv

If the functionality provided by remote services is required by the business area or customer, then one
of the following courses of action must be taken:

1. An alternative solution must be implemented to replace the use of the remote services. SSH
may be a valid solution for meeting both the security requirements while at the same time
providing necessary functionality to the customers.

2. Reduce the level of privilege of the remote services by replacing the /etc/hosts.equiv with a
.rhosts entry in the applicable users home directory. This solution should be used only if the
remote service is a business or customer requirement

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 26

Monitoring
Monitoring for compliancy as well as violations of this standard will be accomplished by means of our
standard monitoring procedures and compliancy process.

Enforcement
Any employee found to have violated or not adhered to the established standard and guidelines might
be subject to disciplinary action as mandated by established Acme policy.

Definitions
TERM DEFINITION/EXPLANATION
SSH Secure Shell

Revision History
REVISED BY REVISION

DATE
EXPLANATION OF CHANGE

John Doe April 23, 2003 Finial Revision

Acme Corporation -2-
CNO-Standard_TrustRelationships_v1.0.doc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of the Information Security Reading Room Author retains full rights.

Removing Server Based Trust Relationships

Page 27

Works Cited

Andert, Donna, Wakefield, Robin and Weise, Joel. “Trust Modeling for Security
Architecture Development.” Sun BluePrints OnLine December 2002: 2.
URL: <http://www.sun.com/solutions/blueprints/1202/817-0775.pdf>.

“Authentication for Remote Logins.” Solaris 9 System Administrator Collection:
System Administration Guide: Resource Management and Network
Services. Sun Microsystems, Inc: http://docs.sun.com 2002. URL:

<http://docs.sun.com/db/doc/806-4076/6jd6amrd7?a=view>.

Barclay, Andy. “Configuring SSH”. http://www.UnixPeople 2002. URL:
<http://www.unixpeople.com/HOWTO/configuring.ssh.html>.

Barrett J, Daniel and Silverman E, Richard. SSH The Secure Shell. Sebastopol:
O’Reilly & Associates, Inc., 2001.

Clayton A, C. “Starlink System Note 37.1.” Starlink Security. Starlink Project:
http://www.starlink.rl.ac.uk May 1996. 1-2. URL:
<http://www.starlink.rl.ac.uk/star/docs/ssn37.htx/node24.html>.

Cole, Eric, Millican M, John and Newfield, Mathew. GSEC Security Essentials
Toolkit. Indianapolis: Que Publishing, 2002. 41-42.

Goodwin, Bill. “Hacker Mitnick gives it to you straight”.
http://www.computerweekly.com January 23 2003. 1. URL:
<http://www.computerweekly.com/Article118786.htm>.

Gregory H, Peter. Solaris Security. Upper Saddle River: Prentice Hall PTR, 2000.
169-170.

“Hosts.equiv(4).” Solaris 9 Reference Manual Collection: man pages section 4:
File Formats: hosts.equiv(4) - trusted remote hosts and users. Sun
Microsystems, Inc: http://docs.sun.com June 23,1997. URL:
<http://docs.sun.com/db/doc/816-0219/6m6njqb8i?q=hosts.equiv&a=view

 “Logging In to a Remote System.” Solaris 2.6 System Administrator Collection
Vol 1 : System Administration Guide: Part XI Working With Remote
Systems. Sun Microsystems, Inc: http://docs.sun.com 1997. URL:

<http://docs.sun.com/db/doc/802-5750/6i9g464od?a=view>.

Last Updated: September 29th, 2016

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Seattle 2016 Seattle, WAUS Oct 03, 2016 - Oct 08, 2016 Live Event

SANS Oslo 2016 Oslo, NO Oct 03, 2016 - Oct 08, 2016 Live Event

SANS Baltimore 2016 Baltimore, MDUS Oct 10, 2016 - Oct 15, 2016 Live Event

SANS Tokyo Autumn 2016 Tokyo, JP Oct 17, 2016 - Oct 29, 2016 Live Event

SANS Tysons Corner 2016 Tysons Corner, VAUS Oct 22, 2016 - Oct 29, 2016 Live Event

SANS San Diego 2016 San Diego, CAUS Oct 23, 2016 - Oct 28, 2016 Live Event

SOS SANS October Singapore 2016 Singapore, SG Oct 24, 2016 - Nov 06, 2016 Live Event

SANS FOR508 Hamburg in German Hamburg, DE Oct 24, 2016 - Oct 29, 2016 Live Event

SANS Munich Autumn 2016 Munich, DE Oct 24, 2016 - Oct 29, 2016 Live Event

Pen Test HackFest Summit & Training Crystal City, VAUS Nov 02, 2016 - Nov 09, 2016 Live Event

SANS Sydney 2016 Sydney, AU Nov 03, 2016 - Nov 19, 2016 Live Event

SANS Gulf Region 2016 Dubai, AE Nov 05, 2016 - Nov 17, 2016 Live Event

DEV534: Secure DevOps Nashville, TNUS Nov 07, 2016 - Nov 08, 2016 Live Event

SANS Miami 2016 Miami, FLUS Nov 07, 2016 - Nov 12, 2016 Live Event

European Security Awareness Summit London, GB Nov 09, 2016 - Nov 11, 2016 Live Event

DEV531: Defending Mobile Apps Nashville, TNUS Nov 09, 2016 - Nov 10, 2016 Live Event

SANS London 2016 London, GB Nov 12, 2016 - Nov 21, 2016 Live Event

Healthcare CyberSecurity Summit & Training Houston, TXUS Nov 14, 2016 - Nov 21, 2016 Live Event

SANS San Francisco 2016 San Francisco, CAUS Nov 27, 2016 - Dec 02, 2016 Live Event

SANS Hyderabad 2016 Hyderabad, IN Nov 28, 2016 - Dec 10, 2016 Live Event

MGT517 - Managing Security Ops Washington, DCUS Nov 28, 2016 - Dec 02, 2016 Live Event

ICS410@Delhi New Delhi, IN Dec 05, 2016 - Dec 09, 2016 Live Event

SANS Cologne Cologne, DE Dec 05, 2016 - Dec 10, 2016 Live Event

SEC 560@ SANS Seoul 2016 Seoul, KR Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Dublin Dublin, IE Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cyber Defense Initiative 2016 Washington, DCUS Dec 10, 2016 - Dec 17, 2016 Live Event

SANS Amsterdam 2016 Amsterdam, NL Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Frankfurt 2016 Frankfurt, DE Dec 12, 2016 - Dec 17, 2016 Live Event

SANS DFIR Prague 2016 OnlineCZ Oct 03, 2016 - Oct 15, 2016 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=43307
http://www.sans.org/seattle-2016
http://www.sans.org/link.php?id=42617
http://www.sans.org/oslo-2016
http://www.sans.org/link.php?id=43382
http://www.sans.org/baltimore-2016
http://www.sans.org/link.php?id=41637
http://www.sans.org/tokyo-autumn-2016
http://www.sans.org/link.php?id=43392
http://www.sans.org/tysons-corner-2016
http://www.sans.org/link.php?id=43387
http://www.sans.org/san-diego-2016
http://www.sans.org/link.php?id=41247
http://www.sans.org/sos-sans-october-singapore-2016
http://www.sans.org/link.php?id=45977
http://www.sans.org/for508-hamburg-in-german-2016
http://www.sans.org/link.php?id=44797
http://www.sans.org/munich-autumn-2016
http://www.sans.org/link.php?id=43852
http://www.sans.org/pen-test-hackfest-2016
http://www.sans.org/link.php?id=41552
http://www.sans.org/sydney-2016
http://www.sans.org/link.php?id=44142
http://www.sans.org/gulf-region-2016
http://www.sans.org/link.php?id=47157
http://www.sans.org/dev534-nashville-tn-2016
http://www.sans.org/link.php?id=43402
http://www.sans.org/miami-2016
http://www.sans.org/link.php?id=43857
http://www.sans.org/euro-sec-awareness-summit-2016
http://www.sans.org/link.php?id=47162
http://www.sans.org/dev531-nashville-tn-2016
http://www.sans.org/link.php?id=43862
http://www.sans.org/london-2016
http://www.sans.org/link.php?id=44680
http://www.sans.org/healthcare-cyber-security-summit-2016
http://www.sans.org/link.php?id=43372
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=41642
http://www.sans.org/hyderabad-2016
http://www.sans.org/link.php?id=46525
http://www.sans.org/mgt517-washington-dc-2016
http://www.sans.org/link.php?id=47172
http://www.sans.org/ics410-delhi
http://www.sans.org/link.php?id=45892
http://www.sans.org/cologne-2016
http://www.sans.org/link.php?id=45732
http://www.sans.org/sec560-sans-seoul-2016
http://www.sans.org/link.php?id=45022
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=27544
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43867
http://www.sans.org/amsterdam-2016
http://www.sans.org/link.php?id=43952
http://www.sans.org/frankfurt-2016
http://www.sans.org/link.php?id=44072
http://www.sans.org/dfir-prague-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

