SANS, working with industry experts, is making a difference in the Industrial Control System (ICS) cyber security front. SANS has joined forces with industry leaders to change the game, by equipping both security professionals and control system engineers with the security awareness, work specific knowledge, and hands-on technical skills they need to secure automation and control system technology. The SANS ICS team is working to provide ICS focused curriculum and certifications, as well as community resources including posters, white papers, and security practice approaches. SANS has engaged the dedicated practitioner community that assembles during our global and regional ICS summits, and leverage leaders from enterprises, governments, and vendors from around the globe to tackle our common challenges and share working solutions.

LEVEL 5 Enterprise Business Network
Corporate networks and applications used to support Enterprise Business and User Goals. Items typically found in this zone include; Internet access points, Email servers, customer-facing web servers, intranet web site, CRM systems, HR systems, corporate directory management systems, and remote access VPN endpoints.

LEVEL 4 Business Unit or Plant Network
IT shared services for a local site, business unit, or subsidiaries. Items typically found in this zone include: local domain controllers, local print servers, local file and print servers, local phone systems, site directory replicas, site specific Internet access points, local domain controllers, local print servers, local file and print servers, local phone systems, site directory replicas, site specific Internet access points.

LEVEL 3 Operations Support
Includes the functions involved in managing the operations environment. Items typically found in this zone include: patch management servers, Anti-Virus management systems, site specific application servers, jump host environments, business intelligence systems, backend database for site specific applications, and development systems.

LEVEL 2 Supervisory Control LAN
Includes the functions involved with the real-time control system. Items typically found in this zone include: control center operation workstations, Human Machine Interfaces (HMI), engineering workstations, security event collectors, operations alarm systems, communications from end, email historians, and Network / application administrator workstations.

LEVEL 1 Control Devices
Control functions include: dedicated operator workstations, Programmable Logic Controllers, control processors, programmable relays, Remote Terminal Units, and process specific microcircuits.

LEVEL 0 Process Control Instrumentation Bus Network
The functions involved in the instrumentation bus network from either physical or from physical to cyber. Items typically found in this zone include: sensors, actuators, motors, process specific automation machinery and field instrumentation devices.

Security Zone
Safety specific systems are engineered for a specific protective function. Items typically found in this zone include all items identified in level 1 and with a dedicated purpose for monitoring, sensor monitoring, ensure monitoring and e-most safety systems there exists a control function that serves to protect the operation and personnel.

Enforcement Zone
Includes the functions necessary to segment and protect the various zones within an ICS environment. Items typically found in this zone include intrusion detection, router enforcement, firewalls, data guard technology, and unidirectional data diode technology. Technologies implemented may differ at the various enforcement zones within an ICS environment depending on the business needs and the level of risk determined at a specific enforcement zone.

SANS, working with industry experts, is making a difference in the Industrial Control System (ICS) cyber security front. SANS has joined forces with industry leaders to change the game, by equipping both security professionals and control system engineers with the security awareness, work specific knowledge, and hands-on technical skills they need to secure automation and control system technology. The SANS ICS team is working to provide ICS focused curriculum and certifications, as well as community resources including posters, white papers, and security practice approaches. SANS has engaged the dedicated practitioner community that assembles during our global and regional ICS summits, and leverage leaders from enterprises, governments, and vendors from around the globe to tackle our common challenges and share working solutions.

Global ICS Critical Security Certification
GIAC, working with industry experts, has developed a vendor neutral, practitioner-focused Industrial Control System certification. The Global Industrial Cyber Security Professional Certification (GIAC) assesses a base level of knowledge and understanding across a diverse set of professionals who engineer or support control systems and share responsibility for the security of these environments. This certification will be leveraged across industries to ensure a minimum set of knowledge and capabilities that an IT, engineer, and security professional should know if they are in a role that could impact the cybersecurity of an ICS environment.

Securing the Human
SANS has expanded the focus of the popular Securing the Human product into two ICS focused areas. First, Securing the Human for Utilities is a computer-based training program with specific focus on the NERC CIP Standards. This training consists of seven core modules that provide an overview of NERC and FERC, an Introduction to the NERC CIP Standards, and a series of topics on policy and electronic access controls, as well as information protection and incident response.

In addition, SANS has developed Securing the Human for Engineers, which focuses on security behaviors for individuals who interact with, operate, or support industrial Control Systems. This training consists of 10 online modules and provides an ICS overview, an understanding of ICS operations and security events, common system attacks, and covers basic system and network defense approaches in an ICS environment, as well as governance and policy resources.

These programs were developed to not only assist your organization in meeting compliance requirements through continued training and standard reporting, but also change human behavior and reduce risk.

SANS ICS410: ICS/SCADA Security Essentials
This course provides students with the essentials for conducting security assessments of ICS/SCADA systems. This course is the first in the series of ICS focused courses from the SANS Industrial Control Systems team. The course provides hands-on training, evaluated case studies, and exam preparation. This course is ideal for individuals who work in industrial Control System (ICS) environments. Students will learn the language, the underlying theory and the basic tools for ICS security in industrial settings across a diverse set of industry sectors and applications. This course will introduce students to ICS and provide the necessary information and learning to secure control systems while keeping the operational environment safe, reliable, and resilient.
Control Systems Are a Target

You may not realize it, but your organization’s Industrial Control System (ICS) environments are a target for cyber attackers. The ICS automation, process control, access control devices, system accounts and asset information all have tremendous value to attackers. This poster demonstrates the many different ways attackers can gain access to an ICS environment and demonstrates the need for active security efforts and ICS engineer training that will enable informed engineering decisions and reenforce secure behaviors when interacting with an Industrial Control System.

In many cases these are not one-off attacks, but are planned for with reconnaissance, multiple attacks and adjustments. These are campaigns that happen over the course of months, and they require system owners and operators to be vigilant and recognize when something is not right.

Network Access
- Internet accessible systems are being mapped by ERIPP or SHODAN, or are easily locatable through search engine queries
- Malware can spread vertically through the network by trusted system to system connections or VPN
- It is very easy to maneuver undetected throughout a control environment
- There is potential to leverage non-routable trusted communication paths

Interconnects
- ICS systems can be attacked by exploiting applications that communicate through network segmentation
- Connections to other organizations, plants or systems
- Many ICS environments are susceptible to network-based Man in the Middle Attacks

Dial-Up
- ICS assets can be remotely accessible through traditional dial-up modems that have little access control protections
- Numerous ICS assets at a location can be accessed through a single dial-up access point with a multiplex device that enables connections to many ICS assets
- Old attack vectors can still be successful in ICS environments

System Management
- Attackers can take advantage of long delays in patching and operating system upgrades
- Attackers can take advantage of systems with no anti-virus, or out-of-date signatures
- Attackers will leverage default usernames and passwords or weak authentication mechanisms
- Attacks will be difficult to detect due to minimal asset security logging capability
- Attackers will leverage file access techniques to move data in and out of the ICS environment through physical removable media or trusted communication paths utilized for system maintenance

Supply Chain
- Third party vendors, contractors or integrators can be attacked in an attempt to ultimately attack an ICS asset owner or multiple asset owners
- ICS hardware and software can be directly breached or impacted prior to arriving in the production ICS environment

Governance
- Attackers can leverage the lack of corporate security policies, procurement language, asset inventory and standardization that exist in many ICS environments
- Attackers can have greater impacts on ICS environments, as ICS assets are often not considered in the preparation phase of security incident response planning and containment approaches
- ICS risk and hazard assessment are not always evaluated with the loss of cyber integrity which, can lead to a loss of availability, impacts due to interdependencies and misuse of critical components or functions
- In some sectors ICS assets are often archived or assessed from a compliance perspective and not always assessed from a security perspective

Social Engineering
- Request for Proposals often contain a wealth of information regarding an ICS environment
- Vendors frequently post information about a project they are working on for an ICS customer
- Employee social media sites often contain technology architecture information and, possibly, images of ICS work environments
- Engineer professional bio can provide a helpful map of your ICS
- Publicly available information regarding an ICS asset owners’ vendor relationships, conference attendance, committee participation and domain registrations can all be leveraged against the organization

Physical Security
- Attackers can leverage the physical locations of numerous ICS assets that could be located in remote geographies or are unmonitored, even when little to no physical access controls ICS assets can be physically stolen or obtained
- ICS assets can be physically stolen or obtained secondhand with access to sensitive information that could be used in planning an attack
- Physical changes or alterations to ICS devices are often difficult to detect

Cyber Actors
- Nation States
- Insiders and other trusted parties (such as contractors / vendors / integrators)
- Criminal Hacker
- Politically motivated attackers (hacktivists)
- Script Kiddies

ICS Security goal: Ensure the safe, reliable and secure operation of ICS environments from procurement to retirement

Abnormal activity or unexplained errors deserve a closer security look