
Interested in learning more
about cyber security training?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Developing a Snort Dynamic Preprocessor

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Developing_a_Snort_Dynamic_Preprocessor+Cover&utm_campaign=SANS+Training
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 1

Developing a Snort Dynamic Preprocessor

GCIH Gold Certification

Author: Daryl Ashley, ashley@infosec.utexas.edu

Adviser: Joey Niem

Accepted: 2008-08-19

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 2

1. Introduction ... 3

2. Intended Audience ... 4

3. Netcat .. 5

4. SFSnortPacket Data Structure 6

5. DynamicPreprocessorData Data Structure 7

6. Example Dynamic Preprocessor Configuration 8

7. Example Dynamic Preprocessor Configuration and Testing 11

8. Example Dyna mic Preprocessor Header File 14

9. Registering and Initializing the Example Dynamic Preprocessor

 16

10. Example Dynamic Preprocessor Preproc Function 17

11. The alertAdd Function .. 20

12. Example Application ‒ Looking For a Credit Card Number 21

13. Determining the Purpose of Other DynamicPreprocessorData

Functions 22

14. Conclusion .. 23

15. References .. 24

16. Example Code Listing ... 26

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 3

1. Introduction

The goal of this paper is to demonstrate how to create a controlled

environment for testing and writing a dynamic preprocessor. Why would it be

necessary to write a dynamic preprocessor? Those familiar with Snort know that it

is highly configurable. If you look through the Snort User Guide, there are many

options that can be used when writing a Snort signature (Sturges, 2008). However,

there are some situations where a preprocessor has some advantages.

When Snort receives a packet, it performs a series of operations before the

packet is analyzed against signatures in the Snort configuration file. The packet

is decoded and processed by preprocessors before being analyzed for rule hits

(Scott, Wolfe, and Hayes, 2004). So, a preprocessor can be used to “normalize”

traffic. For example, url-encoding is a technique that can be used to obscure HTTP

traffic (Skoudis, 2007). Suppose you want to write a snort rule that will generate

an alert if a packet contains the credit card number “4444 4444 4444 4444”. A

content match rule can be written that looks specifically for this string of

characters. But, if the credit card number is url-encoded, it will look like the

listing shown below.

%34%34%34%34%20%34%34%34%34%20%34%34%34%34%20%34%34%34%34

To generate an alert for the url-encoded string, a separate content match rule must

be written to detect this sequence of characters. The Http Inspect preprocessor

can be used to “normalize” http traffic. It converts the url-encoded string

above into the character string normally seen before snort rules are applied to

generate alerts (Sturges, 2008). The preprocessing of the packet payload allows

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 4

the Snort administrator to write only one rule for a specific http exploit. The

administrator no longer needs to worry about different methods an attacker can use

to obfuscate the packet payload.

 A preprocessor can be developed to perform complex analysis of the packet

payload. A conventional snort rule to detect credit card numbers would use a

regular expression to detect sequences of sixteen digit characters. This type of

rule may produce many false positives. The Luhn algorithm is a simple mathematical

algorithm which can be used to detect false positives (2008 July 5). However, a

conventional Snort rule cannot be written to perform a mathematical analysis on the

packet payload. To reduce false positives, a preprocessor can be written to use

the Luhn algorithm to verify a credit card number before generating an alert.

2. Intended Audience

This paper is intended for experienced Snort administrators (those who have

compiled, installed, configured, and used Snort). Some familiarity with the C

programming language and netcat is also necessary. Netcat will be used to transmit

the network packets used to test the preprocessor.

This paper was written while running Snort version 2.8.2.1 on a Gentoo Linux

system. Snort was built on the system using the commands shown below.

gunzip snort-2.8.2.1.tar.gz

tar ‒xvf snort-2.8.2.1.tar

cd snort-2.8.2.1

./configure

make

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 5

make install

The list below shows the locations of important files and directories. The

files will be edited and inspected throughout this paper.

snort-2.8.2.1/src - source files for main snort engine

snort-2.8.2.1/src/dynamic-examples/dynamic-preprocessor ‒ source files for

the example dynamic preprocessor

/usr/local/snort/etc ‒ location of snort configuration file

/usr/local/snort/log ‒ directory where log output and alerts are generated

/usr/local/lib/snort_dynamicpreprocessor ‒ directory where the dynamic

preprocessor will be installed

/usr/local/bin/snort ‒ snort executable

If you built snort using different configuration options, you will need to

determine where everything is located on your system. To verify the version of

snort installed on your system, type the command shown below.

 /usr/local/bin/snort -V

3. Netcat

Netcat is a program which is used to read and write data across network

connections using the TCP/IP protocol (Giacobbi, 2006). Netcat will be used to set

up a listening port on the machine running snort and to transmit data from a client

machine to test the dynamic preprocessor. This paper will refer to the machine

running snort as the snort host, and the machine used to transmit test data as the

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 6

client host.

The following command is used to create a netcat listener on port 61324 of

the snort host.

nc -l -p 61324

The command will hang until it receives input from a client connecting to port

61324.

Data can then be sent from the client host using the command shown below.

echo “hello” ¦ nc snort_host_ip 61324

“Hello” will be displayed and the command prompt will be returned on the snort

host. The listener on the snort host will not be “persistent”. You will need to

re-run the command each time you want the snort host to listen for data from the

client host.

4. SFSnortPacket Data Structure

When Snort receives network packets, it decodes the various portions of the

packet, such as layer 2, 3, and 4 headers and packet payload (Scott, Wolfe, and

Hayes, 2004). The decoded information is used to assign values or pointers to a

SFSnortPacket data structure (Sturges, 2008). A dynamic preprocessor will have

access to the SFSnortPacket data structure (Sturges, 2008), allowing the dynamic

preprocessor to inspect the protocol header information as well as the packet

payload. A portion of the definition for the SFSnortPacket struct is shown below

(Sturges, 2008). The definition includes members such as payload, payload_size,

src_port, and dst_port as part of the data structure.

 The full SFSnortPacket data structure and some related data structures are

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 7

available in the Snort User Guide (Sturges, 2008).

typedef struct _SFSnortPacket

{

struct pcap_pkthdr *pcap_header;

u_int8_t *pkt_data;

... Lots of layer 2 stuff

 IPV4Header *ip4_header, *orig_ip4_header;

u_int32_t ip4_options_length;

void *ip4_options_data;

TCPHeader *tcp_header, *orig_tcp_header;

u_int32_t tcp_options_length;

void *tcp_options_data;

UDPHeader *udp_header, *orig_udp_header;

ICMPHeader *icmp_header, *orig_icmp_header;

u_int8_t *payload;

u_int16_t payload_size;

u_int16_t normalized_payload_size;

... some IP stuff

u_int16_t src_port;

u_int16_t dst_port;

... more stuff

} SFSnortPacket;

5. DynamicPreprocessorData Data Structure

 The DynamicPreprocessorData data structure can be thought of as the API used

to communicate with Snort. Unlike the SFSnortPacket data structure, most of the

members of this data structure are functions instead of variables. The functions

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 8

can be used to log messages, generate alerts, and perform other tasks. A portion

of the data structure’s definition is shown below (Sturges, 2008). The full

definition for this data structure can be found in the Snort User Guide (Sturges,

2008).

typedef struct _DynamicPreprocessorData
{
 ... some variables

LogMsgFunc logMsg;
... some more log/debug functions
 PreprocRegisterFunc registerPreproc;
 ... more functions
AlertQueueAdd alertAdd;
... more stuff

} DynamicPreprocessorData;

6. Example Dynamic Preprocessor Configuration

Snort provides a source file for an example dynamic preprocessor. The

example preprocessor will be modified throughout this paper. Before making changes

to the source code, Snort must be configured to use the example preprocessor.

Change into the library directory (from section 2 above) and use the

following command to verify the example dynamic preprocessor has been installed

correctly.

ls ‒l *example*

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 9

If the example preprocessor has been installed correctly, output similar to

the listing shown below should be displayed.

rw-r--r-- 1 root root 38594 Jun 30 15:46 lib_sfdynamic_preprocessor_example.a

-rwxr-xr-x 1 root root 1064 Jun 30 15:46 lib_sfdynamic_preprocessor_example.la

lrwxrwxrwx 1 root root 43 Jun 30 15:46 lib_sfdynamic_preprocessor_example.so ->

lib_sfdynamic_preprocessor_example.so.0.0.0

lrwxrwxrwx 1 root root 43 Jun 30 15:46 lib_sfdynamic_preprocessor_example.so.0 -

> lib_sfdynamic_preprocessor_example.so.0.0.0

-rwxr-xr-x 1 root root 29309 Jun 30 15:46

lib_sfdynamic_preprocessor_example.so.0.0.0

When you start modifying the example source code, you will need to check the

timestamps of these libraries to verify that they have been updated after the

preprocessor has been recompiled and reinstalled.

To use the example preprocessor, add the following line to the snort.conf

file at the end of the section labeled “Step #2”.

preprocessor dynamic_example: port 61324

Use the command shown below to start snort. You will need a terminal that allows

you to scroll through the snort output.

snort ‒c /usr/local/snort/etc/snort.conf -l /usr/local/snort/log

Snort should display output similar to the listing shown below.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 10

--== Initializing Snort ==--

Initializing Output Plugins!

Initializing Preprocessors!

Initializing Plug-ins!

Parsing Rules file /usr/local/snort/etc/snort.conf

PortVar 'HTTP_PORTS' defined : [80]

PortVar 'SHELLCODE_PORTS' defined : [0:79 81:65535]

PortVar 'ORACLE_PORTS' defined : [1521]

Tagged Packet Limit: 256

Loading dynamic engine

/usr/local/lib/snort_dynamicengine/libsf_engine.so... done

Loading all dynamic preprocessor libs from

/usr/local/lib/snort_dynamicpreprocessor/...

Loading dynamic preprocessor library libsf_ftptelnet_preproc.so... done

Loading dynamic preprocessor library libsf_smtp_preproc.so... done

Loading dynamic preprocessor library libsf_dcerpc_preproc.so... done

Loading dynamic preprocessor library libsf_dns_preproc.so... done

Loading dynamic preprocessor library libsf_ssl_preproc.so... done

Loading dynamic preprocessor library lib_sfdynamic_preprocessor_example.so...

done

Finished Loading all dynamic preprocessor libs from ...

Example dynamic preprocessor configuration

 Port: 61324

The red output shown above was generated by the example preprocessor.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 11

7. Example Dynamic Preprocessor Configuration and Testing

Change into the snort-2.8.2.1/src/dynamic-examples/dynamic-preprocessor

directory. There should be a file named spp_example.c. Open this file with a text

editor. The spp_example.c file should contain the following declaration.

extern DynamicPreprocessorData _dpd;

The variable _dpd is declared in the sf_dynamic_preproc_lib.c file. This is the

interface used to communicate with Snort. For example, the logMsg function of the

DynamicPreprocessorData struct can be used as shown below.

_dpd.logMsg("Daryl was here...\n");

This line of code tells the Snort to display the string “Daryl was here...” to

standard output or to the syslog facility if snort is run in daemon mode. To

demonstrate this, look for the function Example_Setup in the spp_example.c file.

The Example_Setup function is shown below.

void ExampleSetup()

{

_dpd.registerPreproc("dynamic_example", ExampleInit);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is setup\n"););

}

Modify the code block to include the logMsg function call.

void ExampleSetup()

{

_dpd.registerPreproc("dynamic_example", ExampleInit);

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 12

_dpd.logMsg("Daryl was here...\n");

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is

setup\n"););

}

Recompile and reinstall the dynamic preprocessor by typing the command shown below.

make

make install

Verify there are no compile errors after running the "make" command. After

successfully running the above commands, verify that the timestamps on the example

preprocessor libraries have been updated and restart snort. The following should

now be displayed.

--== Initializing Snort ==--

Initializing Output Plugins!

processor_example.so... done

...

 ...

Finished Loading all dynamic preprocessor libs from ...

Daryl was here...

Example dynamic preprocessor configuration

 Port: 61324

The example preprocessor generates alerts when packets with a source or

destination port of 61324 are processed by snort. To verify this, create a netcat

listener on port 61324 on the snort host and use the client host to send some data.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 13

snort_host> nc -l -p 61324

client_host> echo "hello" ¦ nc snort.host 61324

Next, look at the snort alert file in the log directory. The alert file will

contain text similar to the listing shown below.

[**] [256:2:1] example_preprocessor: dest port match [**]

[Priority: 3]

06/30-15:18:57.193524 146.6.97.140:33144 -> 146.6.193.164:61324

TCP TTL:61 TOS:0x0 ID:6034 IpLen:20 DgmLen:60 DF

******S* Seq: 0x793E1469 Ack: 0x0 Win: 0x16D0 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 268895227 0 NOP WS: 2

[**] [256:1:1] example_preprocessor: src port match [**]

[Priority: 3]

06/30-15:18:57.193547 146.6.193.164:61324 -> 146.6.97.140:33144

TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:60 DF

***A**S* Seq: 0xA27FE395 Ack: 0x793E146A Win: 0x16A0 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 581098500 268895227 NOP WS: 5

… more alerts …

The top line of each alert includes "example_preprocessor", the name of the

preprocessor. The top line contains [256:1:1] or [256:2:1]. The numbers in the

brackets are the generator ID, SID, and SID version (Scott, Wolfe, and Hayes,

2004). There is a short text description describing the type of alert (Scott,

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 14

Wolfe, and Hayes, 2004), either "src port match" or "dest port match". The source

code for the example preprocessor contains definitions used to generate these

fields.

The flags section of each alert explains why so many alerts were generated.

An alert was generated for each TCP packet that was transmitted - three alerts for

the three way handshake that initializes the TCP connection, an alert for the

packet containing the "hello" string, the ACK packet that acknowledges receipt of

the packet containing the "hello" string, and several FIN packets associated with

the tear down of the TCP connection.

8. Example Dynamic Preprocessor Header File

Use a text editor to open the sf_preproc_info.h header file. This file is included

in the spp_example.c file. A portion of the header file is shown below.

#define MAJOR_VERSION 1

#define MINOR_VERSION 0

#define BUILD_VERSION 1

#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor"

#define DYNAMIC_PREPROC_SETUP ExampleSetup

extern void ExampleSetup();

The major, minor, and build versions for the preprocessor are defined in this file.

This information is displayed as part of the output when snort is started. Each

preprocessor object loaded by snort is displayed after the initialization of snort

is complete.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 15

--== Initialization Complete == --

 ,,_ -*> Snort! <*-

 o")̃ Version 2.8.2.1 (Build 16)

 '''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html

 (C) Copyright 1998 -2008 Sourcefire Inc., et al.

 Using PCRE version: 7.6 2008 -01-28

 Rules Engine: SF_SNORT_DETECTION_ENGINE Version 1.8 < Build 14>

 Preprocessor Object: SF_Dynamic_Example_Preprocessor Version 1.0 <Build 1>

The output includes major and minor version numbers along with a build number.

The #define DYNAMIC_PREPROC_SETUP statement must be set to the name of the

function that will be used to register the dynamic preprocessor with snort. There

should also be an external declaration of this function in the header file. The

source file spp_example.c contains a function called ExampleSetup that includes the

code shown below.

_dpd.registerPreproc("dynamic_example", ExampleInit);

This line of code registers the example preprocessor with Snort.

 As an exercise, change the major version number in the sf_preproc_info.h

header file to 2. You may need to run the command below before the preprocessor

will be recompiled.

 touch spp_example.c

After the example preprocessor has been recompiled and reinstalled, restart Snort.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 16

The version number of the example preprocessor in the Snort output should now be 2.

9. Registering and Initializing the Example Dynamic

Preprocessor

The following line of code is used to register the dynamic preprocessor.

_dpd.registerPreproc("dynamic_example", ExampleInit);

The registerPreproc function takes two arguments. The first argument,

“dynamic_example”, is a unique string used to identify the preprocessor. This

string was entered in the snort.conf file when configuring snort to use the

preprocessor. The line added to the snort.conf file is shown below.

preprocessor dynamic_example: port 61324

If“plain_old_example” was used as the first argument to the registerPreproc

function, the following snort configuration line must be used.

preprocessor plain_old_example: port 61324

 As an exercise, change the first argument of the registerPreproc function to

“plain_old_example”. Recompile and reinstall the example preprocessor and

restart snort. What kind of error messages does Snort display? Next, change the

configuration file to use the new preprocessor name and restart Snort. Does the

error message go away?

 The second argument to the registerPreproc function is a pointer to an

initialization function. The spp_example.c file contains a function called

ExampleInit. The address of the ExampleInit function is passed to the

registerPreproc function as its second parameter.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 17

The initialization function is used to process options in the configuration

file that affect how the preprocessor analyzes packets. The function receives a

pointer to a character string as a function argument. The option in the snort

configuration file for the example preprocessor is“port 61324”. Snort passes the

string “port 61324” as an argument to the Init function. The Init function then

uses this configuration option to initialize variables which allow the preprocessor

to generate alerts only for packets with a source or destination port of 61324.

 The initialization function has one other purpose, to register a Preprocessor

function. The preprocessor function is the function that will analyze the packet

and decide whether or not to generate an alert. The following line of code

registers ExampleProcess as the preprocessor function responsible for performing

this task.

 _dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 10000);

This paper will not address the other two parameters that were passed to this

function.

10. Example Dynamic Preprocessor Preproc Function

The spp_example.c file contains a function called ExampleProcess. The

argument passed to this function is a void pointer. This pointer is actually a

pointer to a SFSnortPacket object. The following line of code can be used to

access the contents of this object.

SFSnortPacket *p = (SFSnortPacket *)pkt;

The definition of the SFSnortPacket data structure includes a member called

payload. The packet payload can be accessed through this member as shown in the

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 18

following line of code.

 p->payload

As an exercise, modify the ExampleProcess function as shown below (additions

are shown in red). The code copies up to 11 bytes from the payload member of the

SFSnortPacket data structure to a temporary buffer, and uses the _dpd.logMsg

function to display the characters as part of the Snort output.

void ExampleProcess(void *pkt, void *context)

{

 SFSnortPacket *p = (SFSnortPacket *)pkt;

 char tmp[12];

 bzero(tmp,12);

 int length = 11;

 if (length > p->payload_size)

 length = p->payload_size;

 if (!p->ip4_header ¦¦ p->ip4_header->proto != IPPROTO_TCP ¦¦ !p->tcp_header)

 {

 /* Not for me, return */

 return;

 }

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 19

 if (p->src_port == portToCheck)

 {

 if (length > 0) {

 _dpd.logMsg("Copying %i bytes of packet payload into buffer\n",

length);

 strncpy(tmp, (const char *) p->payload, length);

 _dpd.logMsg("Payload data: %s\n", tmp);

 }

 /* Source port matched, log alert */

 _dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

 1, 0, 3, SRC_PORT_MATCH_STR, 0);

 return;

 }

 if (p->dst_port == portToCheck)

 {

 if (length > 0) {

 _dpd.logMsg("Copying %i bytes of packet payload into buffer\n",

length);

 strncpy(tmp, (const char *) p->payload, length);

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 20

 _dpd.logMsg("Payload data: %s\n", tmp);

 }

 /* Destination port matched, log alert */

 _dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

 1, 0, 3, DST_PORT_MATCH_STR, 0);

 return;

 }

}

Recompile and reinstall the preprocessor. Restart Snort, and use netcat to send a

packet containing “hello” to the snort host. After the packet is received by the

Snort host, the packet data should be displayed as part of the output of the snort

command.

11. The alertAdd Function

The example preprocessor looks at p->src_port and p->dst_port to determine if

the packet’s source or destination port matches 61324. If so, it uses the

alertAdd function to generate an alert. The alertAdd function takes a number of

arguments that are used to generate the alert information in the alert log. The

arguments are as follows: Generator ID, SID, Revision number for the rule,

classification number, priority, a message, and rule info.

The generator ID, SID, and message in the example preprocessor are defined in

#define statements toward the top of the spp_example.c file. The following

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 21

information was generated at the top of one of the alerts within the alert file.

[**] [256:2:1] example_preprocessor: dest port match [**]

[Priority: 3]

GENERATOR_EXAMPLE, defined at the top of the spp_example.c file as 256, is passed

as the generator ID to the alertAdd function. This is the 256 in the brackets on

the top line of the alert. DST_PORT_MATCH is defined as 2, and is passed as the

SID to the alertLog function. This is the “2” in the brackets next to the 256.

DST_PORT_MATCH_STR was defined as “example_preprocessor: dest port match” in

spp_example.c. This is the string displayed in the first line as a description of

the alert.

 As an exercise, change the GENERATOR_EXAMPLE, DST_PORT_MATCH, and

DST_PORT_MATCH_STR values and recompile and reinstall the example preprocessor.

Restart Snort, and use netcat to transmit data to the snort host. The new values

should be used to generate alerts in the alert log.

12. Example Application ‒ Looking For a Credit Card Number

As an exercise, add code to the example preprocessor that looks for a

specific credit card number, “4444 4444 4444 4444”. The strncmp function can be

used to detect this string. Use a netcat listener on the snort host to listen for

data on port 61324 and to send test data from the client host. Some of the test

data should contain the above credit card number and some should not.

The example preprocessor should be modified so alerts are generated only if

the credit card number above is transmitted in a TCP connection on port 61324. The

SID and alert message should also be modified so there is an easily identifiable

alert in the log file. Remember, the Preprocessor function is passed a pointer to

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 22

a SFSnortPacket data structure. The payload and payload_size members of this data

structure can be used to examine the contents of the packet.

13. Determining the Purpose of Other DynamicPreprocessorData

Functions

The definition of the DynamicPreprocessorData struct in the Snort User Guide

contains a number of functions (Sturges, 2008) that were not described in this

paper. Unfortunately, the Snort User Guide does not provide a lot of documentation

for the functions. If you are interested in looking at source code, this section

should help you start determining the purpose of each of the functions.

 Change into the snort-2.8.2.1/src/dynamic-plugins and use a text editor to

open the file sf_dynamic_plugins.c. Look for the InitDynamicPreprocessors

function. The variable preprocData is a DynamicPreprocessorData struct, and the

function members are assigned pointers to functions that will be executed when the

_dpd functions are called in the preprocessor. For example, the following line

assigns a pointer to the actual logMsg function.

preprocData.logMsg = &LogMessage;

The function that is executed when you make a call to _dpd.logMsg is LogMessage.

Change into the snort-2.8.2.1/src directory and use the following command to search

for this text in the other source files:

 grep LogMessage *.c ¦ less

This command will display the lines of the source files in which this function is

called. This command should also display what looks like a function declaration in

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 23

the output for the util.c file. The source file util.c contains a LogMessage

function. The code block for this function outputs messages to standard output if

snort is not run in daemon mode and outputs to syslog if run in daemon mode (as

well as not outputting at all if snort is run in quiet mode with the -q command

line flag). This is a difficult way to figure out what the different

DynamicPreprocessorData functions do. But, it is an available option if you are

willing to read source code.

14. Conclusion

Certain tasks are very difficult, if not impossible, to accomplish with snort

signatures. Dynamic preprocessors can be written to perform very complex tasks

because custom code is being written that will interface with snort. This paper

has demonstrated how netcat and the example preprocessor provided by snort can be

used to start writing a dynamic preprocessor. Once a stable development

environment is in place, you should be able to start writing a preprocessor that

will fit whatever needs you may have.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 24

15. References

1. Giacobbi, G (2006, November 1). The GNU Netcat project. Retrieved July 7,

2008, from The GNU Netcat -- Official homepage Web site:

http://netcat.sourceforge.net/

2. Scott, C, Wolfe, P, & Hayes, B (2004). Snort for Dummies. Hoboken: Wiley

Publishing Inc.

3. Skoudis, E (2007). Hacker Techniques,Exploits, and Incident Handling.

Bethesda, MD: The SANS Institute.

4. Sturges, S (2008 May 28). SnortTMUsers Manual 2.8.2. Retrieved July 7, 2008,

from Snort ‒ the de facto standard for intrusion detection/prevention Web

site: http://www.snort.org/docs/snort_htmanuals/htmanual_282/

5. (2008 July 5). Luhn algorithm - Wikipedia, the free encyclopedia. Retrieved

July 7, 2008, from Wikipedia, the Free Encyclopedia Web site:

http://en.wikipedia.org/wiki/Luhn_algorithm

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 25

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 26

16. Example Code Listing

#define SRC_CCN_MATCH 3

#define SRC_CCN_MATCH_STR "example_preprocessor: source CCN match"

#define DST_CCN_MATCH 4

#define DST_CCN_MATCH_STR "example_preprocessor: dest CCN match"

#define SRCH_STRING "4444 4444 4444 4444"

void ExampleProcess(void *pkt, void *context)

{

 SFSnortPacket *p = (SFSnortPacket *)pkt;

 int i, result;

if (!p->ip4_header ¦¦ p->ip4_header->proto != IPPROTO_TCP ¦¦ !p->tcp_header)

{

 /* Not for me, return */

 return;

 }

 if (p->src_port == portToCheck)

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 27

 {

 char *ptr = (char *) p->payload;

 for (i = 0; i < (p->payload_size - 19); i++) {

 result = strncmp(&ptr[i], SRCH_STRING, 19);

 if (result == 0) {

 _dpd.logMsg("CCN found in outgoing traffic");

 /* Source port matched, log alert */

 _dpd.alertAdd(GENERATOR_EXAMPLE, SRC_CCN_MATCH,

 1, 0, 3, SRC_CCN_MATCH_STR, 0);

 return;

 }

 }

 }

 if (p->dst_port == portToCheck)

 {

 char *ptr = (char *) p->payload;

 for (i = 0; i < (p->payload_size - 19); i++) {

 result = strncmp(&ptr[i], SRCH_STRING, 19);

 if (result == 0) {

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Developing a Snort Dynamic Preprocessor

Daryl Ashley 28

 _dpd.logMsg("CCN found in incoming traffic");

 /* Destination port matched, log alert */

 _dpd.alertAdd(GENERATOR_EXAMPLE, DST_CCN_MATCH,

 1, 0, 3, DST_CCN_MATCH_STR, 0);

 return;

 }

 }

 }

}

Last Updated: July 20th, 2018

Upcoming SANS Training
Click here to view a list of all SANS Courses

SANS Riyadh July 2018 Riyadh, SA Jul 28, 2018 - Aug 02, 2018 Live Event

SANS Pittsburgh 2018 Pittsburgh, PAUS Jul 30, 2018 - Aug 04, 2018 Live Event

Security Operations Summit & Training 2018 New Orleans, LAUS Jul 30, 2018 - Aug 06, 2018 Live Event

SANS Hyderabad 2018 Hyderabad, IN Aug 06, 2018 - Aug 11, 2018 Live Event

Security Awareness Summit & Training 2018 Charleston, SCUS Aug 06, 2018 - Aug 15, 2018 Live Event

SANS Boston Summer 2018 Boston, MAUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS San Antonio 2018 San Antonio, TXUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS August Sydney 2018 Sydney, AU Aug 06, 2018 - Aug 25, 2018 Live Event

SANS New York City Summer 2018 New York City, NYUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Northern Virginia- Alexandria 2018 Alexandria, VAUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Krakow 2018 Krakow, PL Aug 20, 2018 - Aug 25, 2018 Live Event

Data Breach Summit & Training 2018 New York City, NYUS Aug 20, 2018 - Aug 27, 2018 Live Event

SANS Chicago 2018 Chicago, ILUS Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Prague 2018 Prague, CZ Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Virginia Beach 2018 Virginia Beach, VAUS Aug 20, 2018 - Aug 31, 2018 Live Event

SANS San Francisco Summer 2018 San Francisco, CAUS Aug 26, 2018 - Aug 31, 2018 Live Event

SANS Copenhagen August 2018 Copenhagen, DK Aug 27, 2018 - Sep 01, 2018 Live Event

SANS SEC504 @ Bangalore 2018 Bangalore, IN Aug 27, 2018 - Sep 01, 2018 Live Event

SANS Wellington 2018 Wellington, NZ Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Amsterdam September 2018 Amsterdam, NL Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Tokyo Autumn 2018 Tokyo, JP Sep 03, 2018 - Sep 15, 2018 Live Event

SANS Tampa-Clearwater 2018 Tampa, FLUS Sep 04, 2018 - Sep 09, 2018 Live Event

SANS MGT516 Beta One 2018 Arlington, VAUS Sep 04, 2018 - Sep 08, 2018 Live Event

Threat Hunting & Incident Response Summit & Training 2018 New Orleans, LAUS Sep 06, 2018 - Sep 13, 2018 Live Event

SANS Baltimore Fall 2018 Baltimore, MDUS Sep 08, 2018 - Sep 15, 2018 Live Event

SANS Alaska Summit & Training 2018 Anchorage, AKUS Sep 10, 2018 - Sep 15, 2018 Live Event

SANS Munich September 2018 Munich, DE Sep 16, 2018 - Sep 22, 2018 Live Event

SANS London September 2018 London, GB Sep 17, 2018 - Sep 22, 2018 Live Event

SANS Network Security 2018 Las Vegas, NVUS Sep 23, 2018 - Sep 30, 2018 Live Event

SANS DFIR Prague Summit & Training 2018 Prague, CZ Oct 01, 2018 - Oct 07, 2018 Live Event

Oil & Gas Cybersecurity Summit & Training 2018 Houston, TXUS Oct 01, 2018 - Oct 06, 2018 Live Event

SANS Brussels October 2018 Brussels, BE Oct 08, 2018 - Oct 13, 2018 Live Event

SANS Pen Test Berlin 2018 OnlineDE Jul 23, 2018 - Jul 28, 2018 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Developing_a_Snort_Dynamic_Preprocessor+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=54250&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Riyadh_July_2018
http://www.sans.org/link.php?id=54250&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Riyadh_July_2018
http://www.sans.org/link.php?id=52840&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Pittsburgh_2018
http://www.sans.org/link.php?id=52840&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Pittsburgh_2018
http://www.sans.org/link.php?id=51235&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Security_Operations_Summit_Training_2018
http://www.sans.org/link.php?id=51235&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Security_Operations_Summit_Training_2018
http://www.sans.org/link.php?id=49920&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Hyderabad_2018
http://www.sans.org/link.php?id=49920&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Hyderabad_2018
http://www.sans.org/link.php?id=51015&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Security_Awareness_Summit_Training_2018
http://www.sans.org/link.php?id=51015&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Security_Awareness_Summit_Training_2018
http://www.sans.org/link.php?id=51140&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Boston_Summer_2018
http://www.sans.org/link.php?id=51140&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Boston_Summer_2018
http://www.sans.org/link.php?id=51150&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_San_Antonio_2018
http://www.sans.org/link.php?id=51150&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_San_Antonio_2018
http://www.sans.org/link.php?id=51270&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_August_Sydney_2018
http://www.sans.org/link.php?id=51270&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_August_Sydney_2018
http://www.sans.org/link.php?id=51155&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_New_York_City_Summer_2018
http://www.sans.org/link.php?id=51155&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_New_York_City_Summer_2018
http://www.sans.org/link.php?id=52890&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Northern_Virginia-_Alexandria_2018
http://www.sans.org/link.php?id=52890&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Northern_Virginia-_Alexandria_2018
http://www.sans.org/link.php?id=53615&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Krakow_2018
http://www.sans.org/link.php?id=53615&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Krakow_2018
http://www.sans.org/link.php?id=53170&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Data_Breach_Summit_Training_2018
http://www.sans.org/link.php?id=53170&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Data_Breach_Summit_Training_2018
http://www.sans.org/link.php?id=52895&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Chicago_2018
http://www.sans.org/link.php?id=52895&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Chicago_2018
http://www.sans.org/link.php?id=52410&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Prague_2018
http://www.sans.org/link.php?id=52410&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Prague_2018
http://www.sans.org/link.php?id=51160&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Virginia_Beach_2018
http://www.sans.org/link.php?id=51160&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Virginia_Beach_2018
http://www.sans.org/link.php?id=51170&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_San_Francisco_Summer_2018
http://www.sans.org/link.php?id=51170&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_San_Francisco_Summer_2018
http://www.sans.org/link.php?id=53640&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Copenhagen_August_2018
http://www.sans.org/link.php?id=53640&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Copenhagen_August_2018
http://www.sans.org/link.php?id=54775&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_SEC504_Bangalore_2018
http://www.sans.org/link.php?id=54775&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_SEC504_Bangalore_2018
http://www.sans.org/link.php?id=51275&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Wellington_2018
http://www.sans.org/link.php?id=51275&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Wellington_2018
http://www.sans.org/link.php?id=50900&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Amsterdam_September_2018
http://www.sans.org/link.php?id=50900&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Amsterdam_September_2018
http://www.sans.org/link.php?id=49930&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Tokyo_Autumn_2018
http://www.sans.org/link.php?id=49930&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Tokyo_Autumn_2018
http://www.sans.org/link.php?id=52885&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Tampa-Clearwater_2018
http://www.sans.org/link.php?id=52885&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Tampa-Clearwater_2018
http://www.sans.org/link.php?id=54900&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_MGT516_Beta_One_2018
http://www.sans.org/link.php?id=54900&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_MGT516_Beta_One_2018
http://www.sans.org/link.php?id=52450&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Threat_Hunting_Incident_Response_Summit_Training_2018
http://www.sans.org/link.php?id=52450&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Threat_Hunting_Incident_Response_Summit_Training_2018
http://www.sans.org/link.php?id=51180&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Baltimore_Fall_2018
http://www.sans.org/link.php?id=51180&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Baltimore_Fall_2018
http://www.sans.org/link.php?id=52580&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Alaska_Summit_Training_2018
http://www.sans.org/link.php?id=52580&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Alaska_Summit_Training_2018
http://www.sans.org/link.php?id=52380&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Munich_September_2018
http://www.sans.org/link.php?id=52380&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Munich_September_2018
http://www.sans.org/link.php?id=52370&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_London_September_2018
http://www.sans.org/link.php?id=52370&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_London_September_2018
http://www.sans.org/link.php?id=51185&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Network_Security_2018
http://www.sans.org/link.php?id=51185&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Network_Security_2018
http://www.sans.org/link.php?id=52415&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_DFIR_Prague_Summit_Training_2018
http://www.sans.org/link.php?id=52415&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_DFIR_Prague_Summit_Training_2018
http://www.sans.org/link.php?id=52455&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Oil_Gas_Cybersecurity_Summit_Training_2018
http://www.sans.org/link.php?id=52455&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=Oil_Gas_Cybersecurity_Summit_Training_2018
http://www.sans.org/link.php?id=53310&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Brussels_October_2018
http://www.sans.org/link.php?id=53310&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Brussels_October_2018
http://www.sans.org/link.php?id=52375&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Pen_Test_Berlin_2018
http://www.sans.org/link.php?id=52375&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_Pen_Test_Berlin_2018
http://www.sans.org/link.php?id=1032&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=Developing_a_Snort_Dynamic_Preprocessor&rret=SANS_OnDemand

