Cisco Router Hardening
Step-by-Step

Dana Graesser
Cisco Router Hardening Step-by-Step
Security Essentials v1.2e
Dana Graesser
July 25, 2001

1. Introduction
There are three main categories of routers in use at companies today. Not brands such as Cisco, Nortel and Juniper, but three types that include Internet Gateway routers, Corporate Internal routers and B2B routers. These three categories of routers should all be given consideration from a security perspective, because they each pose unique security problems that should be addressed.

Internet Gateway routers should be hardened to protect the corporation from external persons who might wish to gain access to internal corporate resources. These external persons might be script kiddies, malicious crackers or paid hackers intending to steal data.

Corporate Internal routers should be hardened to protect the corporation from internal threats. Internal threats can be uninformed users who unintentionally cause harm or dissatisfied employees who are intent on malevolent behavior. Internal routers should also be hardened using tools such as access lists to protect especially sensitive corporate resources such as financial data, research data or employee data.

B2B routers need to be hardened because they pose the same threats as Internet Gateway routers and Corporate Internal routers to the internal network. Additionally they expose the company to a certain level of risk because the partner network could be compromised if security measures are not in place. Protecting business partners from risks from the internal network is good for security and for business relations.

Cisco Systems is the dominant manufacturer of WAN equipment. Other vendors in the same market include Juniper Networks and Nortel Networks. In the second quarter of 2000, Cisco had 75 percent of the high-end router market and an astounding 91 percent in the general router market (http://news.cnet.com/news/0-1004-200-3121255.html).

According to the In-Stat Group 2000 Router Market Analysis, the entire router market will exceed $30 billion by 2004. Additionally, traditional routers sales will grow through 2004 in the double-digit range with terabit routers and SOHO cable/DSL routers leading the increase (http://www.instat.com/abstracts/wn/2000/wn0008rt-abs.htm).

As of June 2000, throughout the world there are more than 5000 Cisco Certified Internetworking Expert (CCIE™) certified professionals, more than 22,000 resellers, more than 1300 solutions partners, and 3700 Cisco Networking Academies in 64 countries (http://www.cisco.com/warp/public/732/abc/enterprise/attributes.shtml).

For all the reasons, a set of standard practices for hardening a router becomes a necessity. Certain variations will always need to be addressed based on the topology of the network, the
protocols used and the business needs. Those variations should be exceptions to the written security policy and should be noted because they could expose the company to certain risks.

2. General Security Guidelines

2.1 Conventions of this Document

The following formats are used in this document. Cisco commands are formatted into text boxes with two columns. The command is listed in column one and the description is listed in column two. All commands should be entered in global configuration mode unless specifically noted otherwise. The commands are written with exact portions of the command in standard font and user defined input in italics. An example is below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable secret password</td>
<td>Establish a new password or change an existing password for the privileged command level.</td>
</tr>
</tbody>
</table>

Commands that are not in global configuration mode will have their mode preceding the command. The mode will be in italics and underline.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-line) transport input ssh</td>
<td>Enable SSH access on VTY ports</td>
</tr>
</tbody>
</table>

A basic understanding of the Cisco Command Line Interface (CLI), router operations, routed protocols and routing protocols is assumed.

2.2 Maximum Benefit vs. Maximum Effort
Defense in Depth and Applied Effort With Actual Results

<table>
<thead>
<tr>
<th>Network Scans</th>
<th>Internet / E2E / E2C</th>
<th>Site WAN Interference</th>
<th>Site LAN / Switched Infrastructure</th>
<th>RAS Platform Hardening</th>
<th>OS Platform Hardening</th>
<th>Application(s) Hardening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Impact</td>
<td>Least Impact</td>
<td>Least Effort</td>
<td>Most Effort</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Defense in Depth and Applied Effort with Actual Results Diagram]

Figure 1 Defense in Depth and Applied Effort with Actual Results

The above chart is one viewpoint on defense in depth. The idea behind the chart is that network security tasks can be seen on a sliding scale from least effort to most effort while moving inversely from high impact to low impact.

Routers are included in three of the top four categories that have high impact on network security. Hardened routers, however, are only part of the solution. Additional measures must be taken to achieve organizational objectives of mitigated computer risk. For example, it is easy to implement an access list on a router to block all HTTP traffic. However, filtering certain websites while allowing others is not a task for which a router is designed. Another area where routers are not the best solution is in filtering email attachments. For these reasons, defense in depth is an important security philosophy.

2.2.1 Network Scans
The task with the least effort and the highest impact is the network security scan. A network security scan generates a list of vulnerabilities to present to the appropriate stakeholders. The scan report should be used to make management aware of the extent of security problems. Tools that can be used to perform a security scan are include without charge scanner Nessus (http://www.nessus.org) and with charge scanner ISS (http://www.iss.net).
Note: Security scans should ONLY be performed when there is explicit written permission from a person or multiple persons in authority.

2.2.2 Internet/B2B/B2C/Hardening/Enclaving
The next task is defined as “Internet”. This task includes hardening Internet Gateway routers, B2B routers, enclaving servers and services for B2B and B2C communications behind a firewall infrastructure, and using an intrusion detection system. The enclaved servers should be hardened using industry best practices. See the section below on OS Platforms for specific suggestions.

2.2.3 Site WAN Interfaces
WAN applies to site-based routers. These routers should also be hardened according to industry standards to only allow needed services in and out. WAN routers are part of Corporate Internal router category.

2.2.4 Site LAN/Switched Infrastructure
LAN applies to the internetwork infrastructure that supports the local network. That infrastructure includes routers, route modules, switches and hubs. Examples of hardening methods include ACLs on the routers and VLANs on the switches. Routers and route modules on the LAN are part of the Corporate Internal router category.

2.2.5 RAS Platform Hardening
A number of methods of hardening are available for RAS. Those techniques can include apply proper authentication, use unlisted numbers in a range different than your company’s public telephone lines, monitor access, limit dial up times and limit access to systems.

2.2.6 OS Platform Hardening
OS Platforms refers to internal systems. They vary widely and all require different hardening techniques. Those techniques include apply patches, disable routing, remove unneeded servers, disable unused services, apply TCPWrappers, install TripWire and apply reverse DNS lookups. Specific Step-by-Step guides for Solaris, Windows NT and Linux are available at www.sans.org.

2.2.7 Application(s) Hardening
Applications have two varieties – purchased applications and in-house developed applications. Security measures for purchased applications can include apply vendor patches and limit services per server (i.e. the PDC is not also the public webservice). In-house developed applications should have security included as part of the initial software design. If not included, future releases should address security issues.

2.3 Enforce the least privilege principle
Enforcing the least privilege principle means that users and administrators get the commands they need and ONLY the commands they need. Having additional privileges allows employees to move beyond the scope of their assigned duties, which can be positive from a business perspective. However from a security view, users should have the privileges assigned to them in a manner to limit their ability to go outside their specified tasks.
This can pose problems because an administrator may have an assigned area of duty and privileges, but may need additional privileges in order to facilitate cross training on another administrator’s duties. A written security policy and a set of operational policies and procedures should outline how this problem is resolved. Cisco routers allow for assignment of up to 15 levels of privilege.

2.4 Identify the Groups

2.4.1 Administrators
Large corporations have many assets and need many administrators. Small companies may have one employee who administers all the systems. In either case it is a good idea to break out all the various roles and determine what privileges each of them should have. This table should be included in the written security policy. For example:

<table>
<thead>
<tr>
<th>Title</th>
<th>Privileges</th>
<th>Number of Devices per Administrator (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Administrator</td>
<td>Level 15 access to all routers</td>
<td></td>
</tr>
<tr>
<td>Access Server Administrator</td>
<td>Level 15 access to all access servers</td>
<td></td>
</tr>
<tr>
<td>Firewall Administrator</td>
<td>Root privilege to all firewalls and management stations</td>
<td></td>
</tr>
<tr>
<td>IDS Administrator</td>
<td>Root privilege to all IDS systems and syslog servers</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Identify the Groups - Administrators and Privileges

The above is a limited example of the roles available and levels of privilege available to administrators. In the above scenario, the router and access-server administrator may be the same person while two additional fulltime personnel will handle the duties of firewall administrator and IDS administrator. Or all of the above administrators may be one person. Or all there may be a team of three router administrators, three access-server administrators, three firewall administrators and three IDS administrators.

Additionally the table could have information about how many devices a single administrator is expected to administer. That will allow for personnel planning based on the number of devices. This is good because certain devices require much more hands-on administration than others. This is especially important because as companies acquire other companies, they can determine what staffing level is appropriate for operations personnel.

2.4.2 Users
Identifying users is an important step in securing the network. Users can be classified in many different ways.

In multi-protocol networks users can be classified as IP users, IPX users, Appletalk users, etc. For example, IP users could be further broken down according to whether they are Unix users, Linux users and Windows users. Windows users could be further broken down based on whether the user runs Windows 2000, Windows NT Workstation or Windows 98.
Users can also be classified according to their business function. Examples include finance, administration, sales, graphics, training, information technology, and research. Under sales, the users could be subdivided into sales managers, outside salespeople, inside salespeople, sales technical support and sales administrators.

The way that each company classifies its users depends on the structure of the organization. Understanding the organization and understanding the needs of the users within that organization allows for judicious assignment of privileges. A smart way to classify users is to develop a matrix based on the criteria best suited to classifying the organization.

2.5 Limit Trust

2.5.1 Administrators
To be useful for any company, the matrix of roles should be developed and then the personnel should be assigned to each role. This table, with the personnel assigned, should be part of the operations documentation. It should NOT be in the written security policy as it may change.

<table>
<thead>
<tr>
<th>Title</th>
<th>Privileges</th>
<th>Number of Devices per Administrator (optional)</th>
<th>Name</th>
<th>Backup (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Administrator</td>
<td>Level 15 access to all routers</td>
<td>Ted</td>
<td>Alice</td>
<td></td>
</tr>
<tr>
<td>Access Server Administrator</td>
<td>Level 15 access to all access servers</td>
<td>Alice</td>
<td>Bob</td>
<td></td>
</tr>
<tr>
<td>Firewall Administrator</td>
<td>Root privilege to all firewalls and management stations</td>
<td>Bob</td>
<td>Alice</td>
<td></td>
</tr>
<tr>
<td>IDS Administrator</td>
<td>Root privilege to all IDS systems and syslog servers</td>
<td>Alice</td>
<td>Ted</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Limit Trust – Administrators and Privileges

If administrators transfer to another department, procedures need to be in place to remove the old permissions. When they leave the company, procedures should be in place about removing the employee from the devices for which they have permissions.

2.5.2 Users
Policies and procedures need to put into place to ensure the users do not gain more privileges then they need and are allowed. The structure of the organization and the matrix of users will highlight what should be done. For example, account creation and deletion should be
coordinated if users belong to both a Windows NT domain and have terminal access to a mainframe.

Users should be prevented from accessing areas other than the ones that have been set up for them. As users transfer from department to another, procedures need to be in place to remove the old permissions and set up new permissions. When employees leave a company, procedures should be in place about removing the employee from the groups for which they have permissions. If the company employs a centralized directory, that could serve as a focal point.

3. Setting up the Router

3.1 Physically secure the router

Physical security is the cornerstone of internetworking security. If an attacker can gain physical access to your device, all the patches, ACLs, and firewall feature sets in the world cannot protect them. The attacker can cause either overt or covert damage to your network is physical access is compromised.

Overt damage is classified as immediate shutdown of the services provided by the router. Examples include stealing the router or turning it off. Covert damage is much harder to find and correct. It consists of the intentional introduction of malicious information that affects the router’s services. For example, a malicious attacker could change one line in a multi-line ACL that will cause routing issues. That change could lead to hours, days or weeks spent tracking down the routing problem.

3.2 Choosing an IOS®

3.2.1 IOS® Background and History

The operating system for Cisco routers is the Cisco Internetwork Operating System (IOS®). The original function of a router is just what is seems it should be – to route packets. Over time that function has expanded greatly with the advent and adoption of new technologies such as voice, video, and virtual private networking. Additional functions will surely be added over time to this cornerstone of the network.

Cisco IOS® Software supports every major protocol and type of physical medium, for end-to-end connectivity across IP and legacy networks. Cisco IOS® WAN and dial connectivity software offers support for ATM, Frame Relay, X.25, ISDN, digital subscriber line (xDSL), cable, wireless, dial, Point-to-Point Protocol (PPP), VPN, and virtual private dialup network (VPDN) services (http://www.cisco.com/warp/public/732/abc/fabric/connectivity.shtml).

The functionality and multi-protocol support of the Cisco IOS® Software allow it to be a very useful security measure in any internetwork. Access Control Lists (ACL), Authentication, Authorization, and Accounting (aaa), and Cisco IOS® Firewall are some of the major tools used in the Cisco IOS® Software to ensure security. Security professionals need to become experts in the use of those tools to mitigate security risks to their network.

The emergence of e-commerce as a viable means to do business has required that networks become more secure so that customers will feel comfortable conducting transactions over the
Internet. Part of that security consists of “hardening” the routers. Having hardened routers, in conjunction with hardened switches, servers and applications, assists in having another layer to a “defense in depth” scheme.

Figure 4 Cisco IOS® Software Intelligent Network Services

Cisco uses the terms release and feature set. A release is analogous to a version number and works on many, if not all, of the various Cisco platforms. Feature sets (also known as software images) are subsets of releases and are also supported across different platforms. Not all feature sets are available on all platforms. Based on the number of releases, number of features and number of platforms there are a large number of IOS® packages available.

Examples of feature-set categories include:

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>A basic feature set for the hardware platform; for example IP, IP/FW</td>
</tr>
<tr>
<td>Plus</td>
<td>A basic feature set plus additional features such as IP Plus, IP/FW Plus, and Enterprise Plus</td>
</tr>
<tr>
<td>Plus – Encryption</td>
<td>The addition of the 56-bit (Example: Plus 56) data encryption feature sets to either a basic or plus feature set; examples include</td>
</tr>
</tbody>
</table>
From Cisco IOS® Release 12.2 onwards, the encryption designators are k8/k9:
1. k8: less than or equal to 64-bit encryption (on 12.2 and up)
2. k9: greater than 64-bit encryption (on 12.2 and up)

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-deployment (ED)</td>
<td>Indicates timely introduction of innovation internetworking technologies.</td>
</tr>
<tr>
<td>Major Release</td>
<td>Takes the new functions introduced in several ED releases and extends them to more platforms and ensures that reliability is achieved over a long period of time, 12.0 and 12.1 are major releases.</td>
</tr>
<tr>
<td>Maintenance Level</td>
<td>12.0 is the number of the major release, and 7 is its maintenance level. The complete release number is 12.0(7)</td>
</tr>
<tr>
<td>T (Technology) Release</td>
<td>Uses the current major release as its foundation to provide new features and platform support. An example is Cisco IOS® Release 12.1T</td>
</tr>
<tr>
<td>X Release</td>
<td>Supports only a limited number of platforms and is based on a T release. An example is 12.1(1)XB.</td>
</tr>
<tr>
<td>General-Deployment (GD) Release</td>
<td>A major release that has had extensive market release, testing and bug analysis in a wide range of network environments. GD is achieved by a particular maintenance version. Subsequent maintenance updates for that release are also GD releases. For example, 12.0 got the GD certification at 12.0(8). Thus, 12.0(9), 12.0(10), and so on are GD releases.</td>
</tr>
</tbody>
</table>

Figure 5 Feature Set Categories

Figure 6 Cisco IOS Releases
Since the different releases of the Cisco IOS® work on different platforms and support different features, one must carefully examine the Release notes to find the most stable, most secure version of IOS® that supports the features that the internetwork needs.

3.2.2 Known Vulnerabilities
Cisco has several major vulnerabilities detailed on its website. A short description of each one, quoted directly from the Cisco website, is included below. Additionally the Bugtraq ID and credit are listed where available. They are available on the Bugtraq Vulnerabilities Database at http://www.securityfocus.com/.

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Cisco Bug ID – Date</th>
<th>Description, Bugtraq ID, Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS PPTP Vulnerability</td>
<td>Cisco Bug ID CSCdt46181</td>
<td>By sending a crafted PPTP packet to port 1723, a control PPTP port, it is possible to crash the router. This vulnerability does not require special router configuration. Enabling PPTP is sufficient to expose the vulnerability. The router will crash after it receives a single packet. http://www.cisco.com/warp/public/707/PPTP-vulnerability-pub.html Bugtraq ID: 3022, Credit: Cisco Security Advisory</td>
</tr>
<tr>
<td>Multiple SSH Vulnerabilities: CRC-32 check</td>
<td>Cisco Bug ID CSCdt96253</td>
<td>In order for this attack to succeed, an attacker must possess one or two known ciphertext/plaintext pairs. This should not be difficult since every session starts with a greeting screen which is fixed and which can be determined. This also implies that an attacker must be somewhere along the session path in order to be able to sniff the session and collect corresponding ciphertext. http://www.cisco.com/warp/public/707/SSH-multiple-pub.html Bugtraq ID: 2347, Credit: Michal Zalewski</td>
</tr>
<tr>
<td>Multiple SSH Vulnerabilities: Traffic analysis</td>
<td>Cisco Bug ID CSCdt57231</td>
<td>To exploit this vulnerability, an attacker must be able to capture packets. When sending a packet using the SSH protocol, it is padded to the next 8-byte boundary, but the exact length of the data (without the padding) is sent unencrypted. http://www.cisco.com/warp/public/707/SSH-multiple-pub.html Bugtraq ID: http://www.securityfocus.com/archive/1/169840, Credit: Solar Designer and Dug Song</td>
</tr>
<tr>
<td>Multiple SSH Vulnerabilities: Key recovery</td>
<td>Cisco Bug ID CSCdu37371</td>
<td>In order to exploit this vulnerability, an attacker must be able to sniff the SSH session and be able to establish a connection to the SSH server. In order to recover the server key, an attacker must perform an additional $2^{20}+2^{19}=1572864$ connections. Since the key has a lifespan of about an hour, this means that an attacker must</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>Bug IDs</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>IOS HTTP Authorization Vulnerability</td>
<td>Cisco Bug ID CSCdt93862</td>
<td>By sending a crafted URL it is possible to bypass authentication and execute any command on the router at level 15 (enable level, the most privileged level). This will happen only if the user is using a local database for authentication (usernames and passwords are defined on the device itself). The same URL will not be effective against every Cisco IOS software release and hardware combination. However, there are only 84 different combinations to try, so it would be easy for an attacker to test them all in a short period of time. The URL in question follows this format: http://<device_address>/level/xx/exec/.... Where xx is a number between 16 and 99.</td>
</tr>
<tr>
<td>IOS Reload after Scanning Vulnerability</td>
<td>Cisco Bug ID CSCds07326</td>
<td>An attempt to make a TCP connection to ports 3100-3999, 5100-5999, 7100-7999, and 10100-10999 will cause the router to unexpectedly reload at the next show running-config, or write memory, or any command that causes the configuration file to be accessed. Cisco IOS software cannot be configured to support any services that might listen at those port addresses, and cannot be configured to accept connections on those ports, however, connection attempts to these ports in the affected version will cause memory corruption, later leading to an unexpected reload. A common log message in environments that experienced security scan related crashes was the "attempt to connect to RSHELL" error message.</td>
</tr>
<tr>
<td>Cisco IOS Software TCP Initial Sequence Number Randomization Improvements</td>
<td>Cisco Bug ID CSCds04747</td>
<td>Cisco IOS® Software contains a flaw that permits the successful prediction of TCP Initial Sequence Numbers. This vulnerability is present in all released versions of Cisco IOS software running on Cisco routers and switches. It only affects the security of TCP connections that originate or terminate on the affected Cisco device itself; it does not apply to TCP traffic forwarded through the affected device in transit between two other hosts.</td>
</tr>
</tbody>
</table>
| Cisco IOS Software Multiple SNMP Community String Vulnerabilities | Cisco Bug IDs | Multiple Cisco IOS® Software and CatOS software releases contain several independent but related vulnerabilities involving the unexpected creation and exposure of SNMP community strings. These vulnerabilities can be exploited to permit the unauthorized viewing or modification of affected devices. Community strings also provide a weak form of access control in earlier versions of SNMP, v1 and v2c. (SNMPv3 provides much improved access control using strong authentication and should be preferred over SNMPv1 and SNMPv2c wherever it is supported.)
| --- | --- | --- |
| Cisco IOS Software SNMP Read-Write ILMI Community String Vulnerability | Cisco Bug ID CSCdp11863 March 7, 2001 | An affected device might be vulnerable to a denial-of-service attack if it is not protected against unauthorized use of the ILMI community string.
Bugtraq ID: 2427, Credit: Cisco Security Advisory |
| Cisco IOS HTTP Server Query Vulnerability | Cisco Bug ID CSCdr91706 November 1, 2000 | A defect in multiple releases of Cisco IOS software will cause a Cisco router or switch to halt and reload if the IOS HTTP service is enabled, browsing to "http://router-ip/anytext?/", and the enable password is supplied when requested. This defect can be exploited to produce a denial of service (DoS) attack.
Bugtraq: 1838, Credit: Alberto Solino |
| Cisco IOS HTTP Server Vulnerability | Cisco Bug ID CSCdr36952 May 15, 2000 | A defect in multiple releases of Cisco IOS software will cause a Cisco router or switch to halt and reload if the IOS HTTP service is enabled and browsing to "http://<router-ip>/%%" is attempted. This defect can be exploited to produce a denial of service (DoS) attack.
Bugtraq ID: 1154, Credit: Keith Woodworth |

Figure 7 Cisco IOS Vulnerabilities

In an environment where uptime and responsiveness are paramount and resources are at a premium, policies and procedures need to be put in place to ensure that all routers have an IOS version installed to avoid exploits and vulnerabilities. Security procedures should require that IT staff visit on a regular basis and sign up for email distributions from the various exploit and vulnerability alert centers.
3.3 Choose a Routing Protocol

Unless this is an installation of a new network, a routing protocol is likely already in use. However, the routing protocol in use may not be the most secure protocol. Migrating from the current insecure protocol to a more secure protocol is a good idea. Routing protocols provide security through the use of peer authentication. A major concern with any routing protocol is the possibility of a router accepting invalid routing updates (Doyle, 1998).

The routing protocols listed in the table are protocols that route IP, IPX and Appletalk only. If additional protocols are being routed the authentication available should be investigated.

<table>
<thead>
<tr>
<th>Protocol Name</th>
<th>Authentication</th>
<th>Clear-Text</th>
<th>MD5 Hash</th>
<th>Protocol RFCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPv1</td>
<td>No</td>
<td></td>
<td></td>
<td>RFC 1058</td>
</tr>
<tr>
<td>IGRP</td>
<td>No</td>
<td></td>
<td></td>
<td>Proprietary</td>
</tr>
<tr>
<td>RIPv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>RFC 1723</td>
</tr>
<tr>
<td>EIGRP</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Proprietary</td>
</tr>
<tr>
<td>OSPFv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>RFC 2328</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>RFC 1142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ISO 10589), 1195</td>
</tr>
<tr>
<td>BGPv4</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>IPX RIP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLSP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPX EIGRP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTMP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appletalk EIGRP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AURP</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 Authentication per routing protocol

3.4 In-Band and Out-of-Band Communications
3.4.1 In-Band communications
Two major forms of in-band communications are available. They are SNMP and Telnet.

3.4.1.1 SNMP
SNMP is a vulnerable service to use on an internetwork and should be used with caution. Many devices have community strings (which are SNMP passwords) of public for read-only access and private for read-write access. An SNMP sweep should be done of the routers on the internetwork. If either public or private is found, they should be removed immediately and replaced with strong passwords.

Multiple versions of SNMP are available: SNMPv1, SNMPv2c, and SNMPv3. SNMPv3 provides for several important security features: message integrity, authentication and encryption. SNMPv3 uses HMAC-MD5 or HMAC-SHA for authentication and 56-bit DES for encryption. If possible, use a different MD5 secret value for sections of the network or for each router. The minimum IOS® software revision must be Release 12.0(3)T to enable all of the SNMPv3 commands below.

SNMPv3 operates in a manner similar to privilege levels. Each user belongs to a group that determines their privileges. The three user groups are auth, noauth, and priv. Below is a table taken from the Cisco Systems website.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>MD5 or SHA</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>MD5 or SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

Figure 9 SNMP v3
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/snmp3.htm#xtocid69272

The commands to enable SNMPv3 are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server engineID local engineid-string</td>
<td>Configures names for both the local and remote SNMP engine (or copy of SNMP) on the router.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>snmp-server group groupname v3{auth</td>
<td>Configures a new SNMP group and maps</td>
</tr>
</tbody>
</table>
noauth | priv} access access-list

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line line-number ending-line-number</td>
<td>Identifies a line for configuration and enters line configuration mode.</td>
</tr>
<tr>
<td>(config-line) transport input ssh</td>
<td>Enable SSH access on VTY ports</td>
</tr>
<tr>
<td>(config-line) exec-timeout minutes [seconds]</td>
<td>Prevents an idle session from consuming a VTY indefinitely. Attackers could use idle sessions as a denial-of-service attack.</td>
</tr>
<tr>
<td>(config-line) service tcp-keepalives-in</td>
<td>Can help to guard against both malicious attacks and "orphaned" sessions caused by remote system crashes.</td>
</tr>
<tr>
<td>(config-line) session-limit session-number</td>
<td>Sets the maximum number of sessions. A small number of sessions may be useful in limiting risk, but leads to the opportunity for denial-of-service.</td>
</tr>
</tbody>
</table>

3.4.2 Out-of-Band Communications
The console port of a router has special privileges. Using the “password recovery” procedures found on the Cisco website (http://www.cisco.com/warp/public/474/), an attacker can gain control over the router.

If no modem or terminal server is attached, the console port is protected by the fact that the router has been physically secured.

However, an attacker who can crash the router, and who has access to the console port via a hardwired terminal, a modem, a terminal server, or some other network device, can take control of the system, even if they do not have physical access to it or the ability to log in to it normally (http://www.cisco.com/warp/public/707/21.html).
If these other methods to access the console are available, passwords and privilege levels should be used to limit access.

3.5 Choose a log server
A log server should be chosen on the network. It should be physically and logically secured. The server should be secured and hardened so that the logs on it will have a high measure of believability.

4. Establish Strong Password Controls and Secure Account Policies

4.1 Passwords
Protect Passwords with Enable Secret

To provide a layer of security, particularly for passwords that cross the network or are stored on a TFTP server, use the enable secret command. It allows you to establish an encrypted password that users must enter to access enable mode (the default), or any privilege level you specify.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable secret password</td>
<td>Establish a new password or change an existing password for the privileged command level.</td>
</tr>
</tbody>
</table>

There is another type called the Enable Password. Anyone who gets a copy of the configuration file can easily crack this type of password. Several tools are available to crack these passwords. They include Password Decryption in the Solarwinds suite (www.solarwinds.net) and GetPass.exe from Boson (www.boson.com).

A way to spot a password that uses this weak form of encryption in a configuration file would be to find a line that looks like this: enable password 7 023c445a05024f0b43460758. The 7 before the string of letters and numbers shows that the password was encrypted using a simple Vigenere cipher that is easy to break.

However, enable secret passwords are not completely invulnerable. They are subject to “dictionary attacks” so copies of the configuration file should be protected from people who should not have access to them.

4.2 Privilege Levels
Cisco employs privilege levels to make security more granular.

By default, the Cisco IOS® software has two modes of password security: user mode (EXEC) and privilege mode (enable). You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands. For example, if you want the configure command to be available to a more restricted set of users than the clear line command, you can assign level 2 security to the clear line command and distribute the level 2 password fairly widely, and assign level 3...
security to the configure command and distribute the password to level 3 commands to fewer users.

Set the Privilege Level for a Command

To set the privilege level for a command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>privilege mode level command</code></td>
<td>Set the privilege level for a command.</td>
</tr>
<tr>
<td><code>enable password level [encryption-type] password</code></td>
<td>Specify the enable password for a privilege level.</td>
</tr>
</tbody>
</table>

Change the Default Privilege Level for Lines

To change the default privilege level for a given line or a group of lines:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>(config-line) privilege level level</code></td>
<td>Specify a default privilege level for a line.</td>
</tr>
</tbody>
</table>

4.3 Banners

Banners are an important security consideration. Banners should be written that meet local, state and federal law considerations. Banners should NOT include verbiage that implies or states directly “Welcome”.

Sample banners are included for an Internet Service Provider, a company, a government agency and a university. These sample banners were taken from actual routers and are only included as a starting point. Care should be taken to write an appropriate banner based on the sensitivity of the data and the perceived threat. For example, a company manufacturing bombs should have a more stringent banner than a university with an open access policy.

4.3.1 Sample ISP Banner

**
Use is restricted to X Company authorized users who must comply with the Acceptable User Policy (AUP). Usage is monitored; unauthorized use will be prosecuted.
**

4.3.2 Sample Company Banner

**
You have logged on to a X Company proprietary device. INFORMATION IN THIS DEVICE BELONGS TO X COMPANY AND/OR ONE OF ITS AUTHORIZED CLIENTS AND MAY NOT BE COPIED (IN WHOLE OR IN PART) IN ANY MANNER WITHOUT EXPRESS WRITTEN AUTHORIZATION. This device may be used only for the authorized business purposes of X Company and/or its clients. Anyone found using this device or its information for
any unauthorized purpose or personal use may be subject to disciplinary action and/or prosecution.

4.3.3 Sample Government Banner

NOTICE TO USERS

This is a Federal computer system and is the property of the United States Government. It is for authorized use only. Users (authorized or unauthorized) have no explicit or implicit expectation of privacy.

Any or all uses of this system and all files on this system may be intercepted, monitored, recorded, copied, audited, inspected, and disclosed to authorized site, Department of Energy, and law enforcement personnel, as well as authorized officials of other agencies, both domestic and foreign. By using this system, the user consents to such interception, monitoring, recording, copying, auditing, inspection, and disclosure at the discretion of authorized site or Department of Energy personnel.

Unauthorized or improper use of this system may result in administrative disciplinary action and civil and criminal penalties. By continuing to use this system you indicate your awareness of and consent to these terms and conditions of use. LOG OFF IMMEDIATELY if you do not agree to the conditions stated in this warning.

4.3.4 Sample University Banner

Unauthorized use of this machine is prohibited.

This is a University machine intended for University purposes. The University reserves the right to monitor its use as necessary to ensure its stability, availability, and security.

To enable banners on a router, use the following command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner login b</td>
<td>To print a banner message</td>
</tr>
</tbody>
</table>

4.4 Router Management with CiscoSecure ACS

CiscoSecure ACS can be a valuable tool to enhance security because a structure can be developed to specify command authorization, set administrative privilege levels, and monitor router access. CiscoSecure ACS uses either TACACS+ or RADIUS to support those functions. Configuration of the CiscoSecure ACS machine, command/control browser, NAS, external
database, and optional token card server are outside the scope of this document. Only commands specific to the routers to be managed are included.

![Diagram](http://www.cisco.com/univercd/cc/td/doc/product/access/acs_soft/cs_unix/acsu235/overview.htm)

Figure 10 Overview of CiscoSecure ACS Configuration

The following command should be coded into router configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tacacs-server host IP address</code></td>
<td>Identify the CiscoSecure TACACS+ server</td>
</tr>
<tr>
<td><code>tacacs-server key key</code></td>
<td>Identify the common key</td>
</tr>
<tr>
<td><code>aaa new-model</code></td>
<td>Global configuration command to enable aaa.</td>
</tr>
<tr>
<td><code>aaa authentication login default tacacs+</code></td>
<td>Enable aaa authentication with the TACACS+ as the method of authentication.</td>
</tr>
<tr>
<td><code>aaa authentication enable default tacacs+</code></td>
<td>Create a series of authentication methods that are used to determine whether a user can access the privileged EXEC command level.</td>
</tr>
<tr>
<td><code>aaa authorization exec tacacs+ if-authenticated</code></td>
<td>Contact the TACACS+ server to determine if users are permitted to start an EXEC shell when they login.</td>
</tr>
<tr>
<td><code>aaa authorization commands 15 tacacs+ if-authenticated</code></td>
<td>By default, privilege levels 0 and 15 are present in the Cisco IOS software. You can define other privilege levels on the router to further control authorization. 15 is used here as an example.</td>
</tr>
<tr>
<td><code>aaa accounting commands 15 stop-only tacacs+</code></td>
<td>Create an accounting method list and enable accounting. The stop-only keyword instructs TACACS+ to send a stop record accounting notice at the end of the requested user process.</td>
</tr>
</tbody>
</table>

4.5 Remove Unneeded Services

The following services should be disabled from security perspective.
In global configuration mode, udp and tcp small services should be disabled. They are on by default in Cisco routers. The services are echo, chargen, daytime and discard. Finger is also on by default and should be disabled. Cisco Discovery Protocol (CDP) and Network Time Protocol (NTP) are on by default, and you should turn these off if you do not need them.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no service tcp-small-servers</td>
<td>When you disable the minor TCP/IP servers, access to the Echo, Discard, Chargen, and Daytime ports cause the Cisco IOS® software to send a TCP RESET packet to the sender and discard the original incoming packet.</td>
</tr>
<tr>
<td>no service udp-small-servers</td>
<td>When you disable the servers, access to Echo, Discard, and Chargen ports causes the Cisco IOS® software to send an "ICMP port unreachable" message to the sender and discard the original incoming packet.</td>
</tr>
<tr>
<td>no ip bootp server</td>
<td>When you disable the BOOTP server, access to the BOOTP ports cause the Cisco IOS software to send an "ICMP port unreachable" message to the sender and discard the original incoming packet.</td>
</tr>
<tr>
<td>no service finger</td>
<td>To disallow Finger protocol requests (defined in RFC 742) to be made of the network server, use this global configuration command. This service is equivalent to issuing a remote show users command.</td>
</tr>
<tr>
<td>no ip source-route</td>
<td>To discard any IP datagram containing a source-route option use this command. It is not good practice to allow IP source-routing due to implicit tunneling attacks.</td>
</tr>
<tr>
<td>no ip identd</td>
<td>The ip identd command returns accurate information about the host TCP port; however, no attempt is made to protect against unauthorized queries.</td>
</tr>
<tr>
<td>no ip http server</td>
<td>To remove the ability to use http to manage Cisco routers. This is very important considering IOS® HTTP Authorization vulnerability.</td>
</tr>
<tr>
<td>no cdp run</td>
<td>To prevent information gathering about routers.</td>
</tr>
<tr>
<td>ntp disable</td>
<td>If you must run NTP, configure NTP only on required interfaces, and configure NTP to listen only to certain specified peers.</td>
</tr>
</tbody>
</table>
4.6 Secure Interfaces
The following commands should be used on the interface level to make specific interfaces more secure.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-if) shutdown</td>
<td>All unused interfaces should be in the shutdown state.</td>
</tr>
<tr>
<td>(config-if) no ip proxy-arp</td>
<td>To prevent internal addresses from being revealed. (This is important to do if you do not already have NAT configured to prevent internal addresses from being revealed).</td>
</tr>
<tr>
<td>(config-if) no ip directed-broadcast</td>
<td>The command should be applied to every LAN interface that isn’t known to forward legitimate directed broadcasts. It is the default in IOS version 12.0 and later.</td>
</tr>
</tbody>
</table>

4.7 Cisco Access Control Lists
Access lists have several purposes. They are to serve as a security filter for traffic coming in from the Internet, to filter traffic to and from business partners, and for intra-company traffic to keep specific areas within the country secure. The first item, blocking traffic from the Internet is fairly well understood and documented. B2B connections are generally treated in the same manner as a connection to the Internet so access principles are the same. Securing traffic within a corporation is a less understood mechanism. For example, if human resources has sensitive information and is on a subnet with other departments, there is a higher risk of compromise than if human resources is on another subnet and has an access list that denies traffic.

There are two general stances on access lists. In the first stance, the access list specifically denies certain traffic and allows all else. The second stance is when the access list allows certain traffic and, by default, denies all else. The second stance is generally considered more secure and is the default that Cisco uses.

Very specific information on using ACLs to block the Top Ten can be found in “Top Ten Blocking Recommendations Using Cisco ACLs Securing the Perimeter with Cisco IOS 12 Routers” by Scott Winters at http://www.sans.org/infosecFAQ/firewall/blocking_cisco.htm which includes specifics from the Top Ten list from SANS at http://www.sans.org/topten.htm.

Additional recommendations for ACLs are located at http://www.insecure.org/news/P55-10.txt. It is an article from Phrack Magazine that discusses best practices for building a “bastion router”.

Cisco recommends the following access list to protect against spoofing.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip access-group list in</td>
<td>Used on an incoming interface to apply the below access-list</td>
</tr>
</tbody>
</table>
access-list number deny icmp any any redirect | Blocks all ICMP redirects
---|---
access-list number deny ip 127.0.0.0 0.255.255.255 any | Blocks packets originating from a loopback address
access-list number deny ip 224.0.0.0 31.255.255.255 any | Blocks packets originating from a multicast address
access-list number deny ip host 0.0.0.0 any | Blocks packets originating from 0.0.0.0 address

The final line could negatively impact BOOTP/DHCP clients and should be tested before wide implementation. The Common Sense Rules of Network Changes should be followed.

A final note on access lists is that recording violations of access lists can be a useful tool in detecting attack patterns. By adding the log-input keyword, access list violations will be recorded along with the interface from which the packet was received and the MAC address of the host that sent it. That keyword should be used when an intrusion is suspected carefully because of the impact on system performance.

5. Logging, Monitoring and Updating the System

5.1 Turn on logging
Logging is a powerful tool when used on a regular basis. Servers are not the only equipment that should have logging turned on. Cisco router logs also provide useful information. Cisco allows granularity when specifying what actions should be logged. Cisco routers can provide an immense quantity of real time status information to support network management simply by enabling the system logging facility (http://www.networkingunlimited.com/white007.html).

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service timestamps log datetime msecs</td>
<td>Add the date and time to syslog messages.</td>
</tr>
<tr>
<td>logging host</td>
<td>Specify the host name or IP address of the host where you want to send syslog messages.</td>
</tr>
<tr>
<td>logging facility facility</td>
<td>Eight facilities LOCAL0(16) through LOCAL7(23); the default is LOCAL4(20). Hosts file the messages based on the facility number in the message.</td>
</tr>
<tr>
<td>logging trap level</td>
<td>(Optional) Use this command to limit messages logged to the syslog servers based on severity.</td>
</tr>
</tbody>
</table>

There are seven logging levels. They are:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – emergencies</td>
<td>System unusable messages</td>
</tr>
<tr>
<td>1 – alerts</td>
<td>Take immediate action</td>
</tr>
<tr>
<td>2 – critical</td>
<td>Critical condition</td>
</tr>
</tbody>
</table>
3 – errors | Error message
4 – warnings | Warning message
5 – notifications | Normal but significant condition
6 – informational | Information message
7 – debugging | Debug messages and log FTP commands and WWW URLs

Figure 11 Logging Levels
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/pix_60/config/commands.htm

5.2 Monitor the Logs
Best practices indicate that logs are useless unless they are reviewed on a regular basis. According to Arizona State University UNIX Network Users Group, to understand better what is happening on your system, we recommend that you check your logs often. Look for unusual entries. See what is happening at 2AM when there is not supposed to be anyone on your system. If you see something, make sure you know what is and why it is running at 2AM (http://www.asu.edu/it/ag/unug/bestpractices/monitor_logs.htm).

Automating the analysis of router logs is essential to allow using the router logs as a proactive network management tool (http://www.networkingunlimited.com/white007.html). Many tools are available to make reviewing log files easier. One example is SWATCH: The Simple WATCHer by Todd Atkins located at http://www.oit.ucsb.edu/~eta/swatch/. Another log analysis tool designed specifically for ISPs and ASPs is Sawmill by Flowerfire at http://www.flowerfire.com/sawmill/isp.html.

5.3 Change Management
According to Fred Nickols, there are two meanings to change management. One meaning of managing change refers to the making of changes in a planned and managed or systematic fashion. The aim is to more effectively implement new methods and systems in an ongoing organization. The changes to be managed lie within and are controlled by the organization. However, these internal changes might have been triggered by events originating outside the organization, in what is usually termed “the environment.” Hence, the second meaning of managing change, namely, the response to changes over which the organization exercises little or no control (e.g., legislation, social and political upheaval, the actions of competitors, shifting economic tides and currents, and so on http://home.att.net/~nickols/change.htm).

These two meanings to change management apply to the types of routers defined above: Internet Gateway routers, Corporate Internal routers and B2B routers. Corporate Internal routers are generally considered to lie within and be controlled completely by the organization. Internet Gateway routers and B2B routers respond to changes external to the organization and may require changes based on external stimuli.

A change management process is invaluable for security. It assures that changes to devices are made in a logical, orderly manner and facilitates good security measures.

Example. A remote site has a router managed by the IT department that currently is only connected to the corporate WAN and they want to add a local connection to the Internet. If a
proper change management program is in place, the remote site will need to submit a request to have the new link added.

This change can then be reviewed against the corporate security policy to ensure that it does not violate the policy, reviewed by technical staff to ensure that the link is properly secured with ACLs and other measured specified according to security procedures developed to adhere to the security policy.

Then the change can be scheduled and implemented with an understanding of how the new link will affect the security of the entire corporation. After the scheduled change has been implemented, tests should be conducted to verify that the changes have not invalidated security measures.

5.4 Common-Sense Rules of Network Changes

Having a method for network changes is an important step in a successful change. A method can include planning, configuring and documentation (Koutras, 2001). Other methods are available. It is a good idea to choose a method and use it faithfully in order to have successful network changes.

There are several items that make up a sensible plan for network changes:

1. Consult experts (internal and/or external)
2. Develop network change plan
3. Develop test plan
4. Develop backout plan
5. Validate plans against corporate security policy
6. Test the configuration in a lab
7. Backup current production configurations
8. Inform stakeholders about changes and change timing (via a Change Management process)
9. Implement changes off-peak in a pilot group, if possible
10. Implement changes off-peak for entire network
11. Test applications
12. Backout (if necessary)

These rules have been developed over time in response to many situations that have arisen based on changes made that were not planned. Based on the size of the network changes, it could require a full-time project manager and a number of staff for months or could require one person for a week.

5.5 Router Security Checklist

The following checklist was taken from the NSA/SNAC Router Security Configuration Guide Executive Summary.

1. Router security policy written, approved, distributed.
2. Router IOS version checked and up to date.
3. Router configuration kept off-line, backed up, access to limited.
4. Router configuration is well documented, commented.
5. Router users and passwords configured and maintained.
6. Enable passwords difficult to guess, knowledge of it is strictly limited.
7. Access restrictions imposed on Console, Aux, VTYs.
8. Unneeded network services disabled.
10. Risky interface services disabled.
11. Port and protocol needs of the network identified and checked.
12. Access lists limit traffic to identified ports and protocols.
13. Access lists block reserved and inappropriate addresses.
14. Static routes configured where necessary.
15. Routing protocols configured to use integrity mechanisms.
16. Logging enabled and log recipient hosts identified and configured.
17. Router’s time of day set accurately, maintained with NTP.
18. Logging set to include time information.
19. Logs checked, reviewed, archived in accordance with local policy.
20. SNMP disabled or enabled using the most secure methods available.

5.6 The Cost of Security
Securing the internetwork of a medium to large corporation is a monumental task. Security has many costs, some of which are obvious and some of which are hidden. These costs need to be known and understood.

5.6.1 Obvious Costs
Obvious costs include the cost of routers, servers, license upgrades, and personnel to run the systems. For example, new routers may need to be purchased in order to take advantage of new technologies. Costs for routers could also include maintenance costs for software upgrades. A new server may be required to take advantage of CiscoSecure. Personnel costs consist of the salaries of administrators as well as the cost of benefits such as health insurance and training. A cost benefit analysis should be conducted to ensure that the cost of the security measures is in line with the value of the corporate assets being protected.

5.6.2 Hidden Costs
According to Network Computing, ongoing tests have proved that there are significant performance penalties once you enable ACLs, especially long ones such as the 200-line list that we used in our tests, because an access list cannot always take advantage of the fastest switching technique that might otherwise be available on the router (http://www.networkcomputing.com/1004/1004ws22.html). Many security measures on a router use additional memory and cpu utilization. These measures can adversely affect performance. A decision needs to be made weighing the benefits of the security measures versus the costs related to performance.

6. References and Further Reading

6.1 References

http://www.asu.edu/it/ag/unug/bestpractices/monitor_logs.htm

http://www.sans.org/infosecFAQ/firewall/commands.htm

http://www.insecure.org/news/P55-10.txt

http://www.ciscopress.com/series.cfm?series=2&subseries=17&news=0

http://www.instat.com/abstracts/wn/2000/wn0008rt-abs.htm

http://www.sans.org/infosecFAQ/linux/hardening.htm

http://www.sans.org/infosecFAQ/firewall/router.htm

http://www.networkingunlimited.com/white007.html

http://home.att.net/~nickols/change.htm

PSIRT. “Cisco IOS HTTP Server Query Vulnerability” 1 November 2000.

PSIRT. “Cisco IOS Software SNMP Read-Write ILMI Community String Vulnerability” 7 March 2001.

PSIRT. “PSIRT Advisories” Updated on As Needed Basis.

http://www.sans.org/topten.htm

Unknown. “The ABCs of Cisco IOS Software” Date Unknown.

Unknown. “Configuring Passwords and Privileges” Date Unknown.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/secur_c/scprt5/scpass.htm

Unknown. “Improving Security on Cisco Routers” Date Unknown.

Unknown. “Password Recovery Procedures” Date Unknown.

http://www.sans.org/infosecFAQ/firewall/blocking_cisco.htm

6.2 Figure Sources

Figure 1 – Defense in Depth and Applied Effort with Actual Results. Source - Lee Robertson, Schlumberger Network Solutions

Figure 4 – Cisco IOS® Software Intelligent Network Services. Source - http://www.cisco.com/warp/public/732/abc/network_services/

Figure 5 – Feature Set Categories. Source - http://www.cisco.com/warp/public/732/abc/releases/package.shtml

Figure 6 – Cisco IOS Releases. Source - http://www.cisco.com/warp/public/732/abc/releases/releases.shtml
Figure 9 – SNMPv3. Source - http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/snmp3.htm#xtocid69272

Figure 10 – Overview of CiscoSecure ACS Configuration. Source - http://www.cisco.com/univercd/cc/td/doc/product/access/acs_soft/cs_unix/acsu235/overview.htm

Figure 11 – Logging Levels. Source - http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/pix_60/config/commands.htm

6.3 Security Tools

6.4 General Security Sites

Bugtraq Vulnerability Database http://www.securityfocus.com

CERT Coordination Center http://www.cert.org

SANS Emergency Incident Handler http://www.incidents.org/

SANS Security Institute http://www.sans.org
Upcoming SANS Training

Click here to view a list of all SANS Courses

<table>
<thead>
<tr>
<th>SANS OnDemand</th>
<th>OnlineUS</th>
<th>Anytime</th>
<th>Self Paced</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS SelfStudy</td>
<td>Books & MP3s OnlyUS</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
</tbody>
</table>