Simulating Cyber Operations: A Cyber Security Training Framework

GIAC (GSEC) Gold Certification

Author: Bryan K. Fite, bfite@meshco.com
Advisor: Barbara L. Filkins

Accepted: February 11, 2014

Abstract
While there are many security competitions and training platforms used to simulate the electromagnetic communication spectrum known as Cyber, they vary widely in effectiveness, assessment capabilities and flexibility. In addition, most are closed and proprietary in nature. What is needed is a publicly adopted Cyber Operations simulation standard to support training, assessment and technique development of operators within the electromagnetic communications spectrum. This paper proposes an innovative way to model Cyber Operations by representing the core simulation elements as Objects and describing their interactions via a Scenario Definition Language (SDL), which dictates the rules governing Object interactions. It further describes an approach used to create purpose-built simulations, defines fundamental object types, presents a lexicon and shows how gaming can be used to support effective cyber operations training and assessment.
Introduction

The current shortage (Finkle & Randewich, 2012) of trained and experienced Cyber Operations Specialist ¹ coupled with the increasing threat (Sophos, 2013) posed by targeted attacks (Verizon, 2013) suggest more effective training methods must be considered. Specifically, there is a need for a publicly adopted Cyber Operations simulation standard to support rapid training, assessment and tool development. Such an approach can address the personnel shortage and ensure organizations can adequately respond to evolving threats.

Simulations can be very effective and powerful tools. While there are many Cyber security competitions and training platforms (see Appendix A: Simulations), they vary widely in effectiveness, assessment capabilities and flexibility. In addition, most are closed and proprietary in nature. Effective assessment requires standards. Standards must be declared, shared and adopted to provide practical utility. Simulations can also reinforce and enhance real-world operational capabilities. The practical benefits of adopting such standards include:

- More relevant and effective training programs
- Standardized skills assessment and accreditation criteria
- Simulation portability and scalability assurance
- The creation of campaign planning and modeling tools

This paper proposes an innovative way to model Cyber Operations via simulations, abstracting the fundamental elements as Objects and describing their interaction via a Simulation Definition Language (SDL). In addition, it describes the approach, declares fundamental object types, presents a Lexicon (see Appendix B: Lexicon) and provides examples of practical application. These elements create the functional foundation for a standard approach to executing Cyber Operations simulations.

¹ A trained and experienced subject matter expert operating in the electromagnetic communications spectrum.

Bryan K. Fite; bfite@meshco.com
1. Models and Simulations

Models are the physical, conceptual or mathematical representation of a system, process or organization with defined rules governing their interactions. Humans have used models to describe the world around them for centuries. Art and science are rich with examples. Ancient cave paintings depicting organized hunting parties, Michael Angelo’s anatomical treatise ‘Vitruvian Man’ (Stanford University, 2002) and modern efforts to map the Human Genome (National Human Genome Research Institute, 2003) are just three examples.

Models provide the rules that govern simulations. A simulation is simply an artificial construct designed to emulate a real world process or system over time. Simulations have been used as effective training and assessment tools throughout history, such as wooden practice swords, mechanical horses (Nilsson, 2010) and flight simulators (Flight Simulator History, 2008).

The utility and appeal of using simulations are especially obvious within a military context. Much better to get bruised with a wooden sword during practice than lose a limb in real combat through lack of skill. Learning to control a horse while wielding a weapon requires techniques best acquired without spooking your mount. Given the skill and cost required to pilot a modern military aircraft, it is much better to train safely in a cost-effective flight simulator than risk the loss of life and multi-million dollar equipment to an untested operator. Simply put, the price of failure is high and the rate of failure will be high until the required skills are attained.

The hallmark of a good candidate for simulation is an activity that is complex, dangerous and/or expensive. The capital and operational costs associated with specialized equipment prohibits their use by unqualified operators. Learning complex skills requires repetition. Training large numbers of people simultaneously and consistently is not a trivial effort.

Controlling the level of risk reduces the consequences of making mistakes, which is often part of the learning process. Mistakes provide opportunities to “rewind” the simulation step-by-step and correct failed simulation responses thus reinforcing the learning experience. The ability to step through all the possible simulation responses
Simulating Cyber Operations

provides opportunities to find the optimum response path. Simulations that modify variables in ways that rarely exist in the real world or are theoretical provide unique opportunities to model high impact Scenarios and support “what-if” exercises.

2. Approach

In order to create effective and portable simulations designed to teach and assess Cyber Operations capabilities, we must have a way to describe the simulated environments. This approach uses functional building blocks to describe simulated environments. These environments can be implemented and deployed across many diverse physical and virtual simulation platforms. This allows for rapid creation of simulations on one platform, which can easily be ported and ran on alternative platforms.

More specifically, we must define the relevant variables required to model the simulated environment and the rules that govern how elements interact with each other in that particular simulated environment or Universe. Depending on the Objectives and Constraints of the simulation, the rules of a specific Universe may or may not parallel those of the real world.

The functional building blocks of a simulation can be expressed as Objects. Objects have specific characteristics known as Attributes. Their interactions with each other are governed by the rules of their respective Universe and can be described using the Scenario Definition Language (SDL)

Objects and Attributes

In order to facilitate multiple simulation integration, simulation portability and like-for-like-assessment across various simulation platforms, a common way to describe all relevant elements within a particular simulated environment is required.

2 A logical construct providing the context and all other required simulation elements in a human friendly format.
3 Refers to a simulated environment that is made up of a combination of primitive objects and governed by the rules that dictate how those primitive objects interact with each other. The rules governing a particulate simulation may or may not align with the rules governing the "real world"; physics, chemistry, biology and the like.
4 A primitive object that defines the relative goals of a simulation.
5 A primitive object designed to shape a simulation by limiting the actor’s range of motion and sphere of influence.

Bryan K. Fite;bfite@meshco.com
Within a given simulation, *Objects* are a collection of predetermined *Attributes* used to describe a specific simulation element. Here an *Object Type* determines required and optional *Attributes*. *Attribute* characteristics dictate how *Objects* interact with each other inside a simulated environment.

There are nine core *Object Types* defined in this paper, known as *Primitives*, which can be used to describe any simulation within the electromagnetic communications spectrum also known as the *Cyber Domain*. All *Primitives* must be supported by a particular simulation environment to be considered compliant. This ensures integration, portability and standard assessment capabilities across various simulated environments.

The nine *Primitives* are:

- **Node**: Any Open System Interconnection (OSI) Layers 1 to 7 (International Organization for Standardization, 1996) connected element
- **Network**: The communication path or paths between nodes, typically OSI Layers 1 to 3 (International Organization for Standardization, 1996)
- **Software**: An operating system, utility, application or service
- **Artifact**: A file (text, audio, graphic or video) or credentials (account, username, password or key material)
- **Constraint**: Shapes a simulation by limiting the actor's range of motion and sphere of influence

6 The total potential sphere of influence afforded an actor or group of actors in the electromagnetic communications spectrum.

Bryan K. Fite; bfite@meshco.com
Objective: The relative goals of a simulation

Actor: A human participant in an active simulation

Process: The workflow associated with a pre-defined simulation element interaction

Message: Communicates information, data or instructions between simulation elements

Objects can be expressed as a hierarchical collection of required and optional *Attributes* in a standardized notation as shown in the following example:

<table>
<thead>
<tr>
<th>Object Type: Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Attributes: Name (N), Host / Gateway Flag (H/G), Operating System (OS), Interface Address(es) (IA), Routing Table (RT), ARP Table (AT), Listening Ports (LP)</td>
</tr>
<tr>
<td>Optional Attributes: Accounts, Applications, Artifact and Services</td>
</tr>
</tbody>
</table>

Adding a unique identifier and populating the *Object Attributes* yields a fully realized *Primitive*:
We can further transform this example into a more structured and compressed notation as shown below:

<table>
<thead>
<tr>
<th>OID (11001): OT</th>
</tr>
</thead>
</table>

Please see Appendix C: Object Type Definitions for a complete list of all Object Types.

It should be noted that some Primitives can be used to describe different aspects of the same element. Additionally, some Primitives could be used to populate variables in another Artifact. Example: Software could represent an executable file, which could also be declared as an Artifact and referenced in a Message.

Simulation Definition Language

By combining various objects together and providing structure, syntax and context, we can create an abstraction method for describing simulations. This abstraction method uses a standard Simulation Definition Language (SDL) to describe simulation elements and the rules that govern them. Using a standard SDL ensures consistent assessment capabilities across platforms and makes simulations available to more diverse populations, regardless of budget, access to technology or experience-level.
All simulations begin with a narrative or story in the form of a *Scenario*. A *Scenario* is a logical construct, which provides the context and other required simulation elements in a human friendly format, as in the example *Scenario* below:

```
"Your mission is to identify your adversary’s security posture by enumerating the attack surface represented by their external network address 10.0.10.0/24. You must submit your findings by 17:00 ET today (1 hour from now). "
```

The above *Scenario* provides the needed information to start creating an effective simulation by decomposing the *Scenario* and then populating the required *Objects* for the simulation:

Message Object: The entire *Scenario* statement above represents the actual message.

Node Objects: Attacker Platform and Defender platform(s), which are used by the Actors to communicate. These represent each Actor’s Platform. (Note: an Actor Platform is also an Asset).

Network(s): The communication path(s) between Actor Platforms and the objective network’s referenced attack surface 10.100.0.0/24.

Actors: In this scenario we can infer there is one Attacker (you) and at least one Defender (target).

Constraint: There is a 1 hour time limit.

Objective: Identify defender’s attack surface, which would be the defender’s assets with exposed IP addresses and TPC/IP/UDP based services.

Simulations can be as simple or complex as needed. However, for a simulation to have any practical utility as a training or assessment tool, a simulation must conform with several basic structural principles:

- Contains at least one *Message*
- Contains at least one *Node*
3. Using Games to Train and Assess

There exists a plethora of Cyber competitions and training platforms created for various purposes. Perhaps the most interesting are those implemented in the form of games. Games have rules, competitors and promised rewards. These three items parallel the elements that are fundamental to any Cyber Operation simulation: Constraints (rules), Actors (competitors) and Objectives (promised rewards).

Now that we have a way to describe simulated environments, we can bring the various elements together to create training and assessment simulations that take the form of games. This is sometimes referred to as Edutainment, a term used to describe the fusion of an educational experience and an entertainment experience. People can learn more effectively in immersive environments that are fun or otherwise enjoyable.

A well-known example of Edutainment is Packetwars™. Packetwars™ is a cyber-sport which simulates offensive and defensive computing scenarios. “PACKETWARS™ is a Sport like nothing you have ever experienced! Games known as “BATTLES” pit individual players and teams against each other in a race to achieve defined objectives.

The rules of engagement are simple:
- Illegal activity of any kind is prohibited
- Protect yourself at all times
- Battles are designed to be of a low, medium or high difficulty level based on the battle objectives and battle duration
- Primary, Secondary and Tertiary objectives are defined and assigned points based on difficulty
- Battles have time limits and other defined constraints
- Constraints are sometimes known to the combatants and other times are not.
- Anything that is not expressly prohibited is allowed.
- Points are awarded for FLARE” (Meshco Incorporated, 2009 p. how-to-play)

Players can take the assessment, that is play the game, by interacting with an implementation of a SDL-defined simulation in the form of a game. Remember SDL-compliant games are platform independent as the SDL creates an abstraction layer between the object primitives and the actual simulation platform. This means the games are transportable across platforms, whether dedicated, virtualized or Cloud-based.

A simulation published on the Packetwars™ platform could be implemented on an alternative platform, assuming both platforms were SDL-compliant. This allows for consistent assessment of the Actors, called combatants in Packetwars™, across platforms, organizations, implementations and other variations, logical, virtual or physical.

Objectives and Constraints

Using the Packetwars™ example above, creating a Battle Scenario requires defining three Objectives (primary, secondary and tertiary) and setting a difficulty level. The difficulty level is dictated by the number and type of Constraints. A reference to duration suggests a primary Constraint is time. Time, in fact, is practically a universal Constraint and must always be considered. A short time allocated to a Battle, would be relatively more difficult than if a longer period of time were allocated to a Battle.

Objectives and Constraints are closely related but very different. Objectives are the relative goals associated with a simulation. Constraints are designed to shape a simulation by limiting an Actor’s range of motion and sphere of influence. Consider how time is related to the Objective in the above example. An Actor must complete three Objectives in a set period of time. Time is therefore part of the Objective (achieve Objectives before time expires) and is also a Constraint.

Objectives come in three classes; attacker specific, defender specific and assessment specific. Attacker and defender Objectives are simply the goals assigned directly to the Actors within the simulation and communicated via a Message.

7 A common term for a shared tenant computing environment.

Bryan K. Fite; bfite@meshco.com
Assessment *Objectives* can be aligned with attacker and defender *Objectives* but usually focus on measuring one or more specific aspects of that *Actor’s* interaction with the simulation. Example: How much time did the *Actor* take to achieve the simulation *Objective*? Sometimes the interaction of interest is directly related to a *Constraint*, since *Constraints* by definition are a limiting factor. For assessment purposes, we could rank *Actors* by who successfully completed all *Objectives* in the shortest amount of time.

Constraints, as the name implies, are *Object Types*, which limit the flexibility of the actors and otherwise influence the “physics” of a particular “Universe”. Allocated time or time limits, available bandwidth, toolsets (availability and effectiveness) and number of actors (attackers versus defenders) are typical simulation *Constraints*.

Objectives and *Constraints* are considered to be declared when they are communicated to the actors. For some assessment purposes, *Objectives* and *Constraints* are not exposed to the Actors. Example: A simulation might declare an *Objective* to retrieve an *Artifact* but not declare the *Objective* by file name as identifying the file name is part of the assessment challenge.

Using Game Spaces

Game Space refers to the demarcation defining the simulation “Universe” and contains the *Objects* that must directly interact as part of the simulation. The *Game Space* is accessible by external *Objects* such as *Actors* and *Actor Platforms* and can communicate with other simulated environments via private local area networks, wide area networks, public networks like the Internet, wireless networks, mesh networks and overlay networks like Virtual Private Networks (VPN). Think of the *Game Space* as the field of play in a sport or a Chess board in Chess. It is where most of the visible action takes place and the results of plays and moves manifest themselves.

Games can be built to leverage existing deployed resources, achieve simulation objectives and facilitate assessment requirements. Remotely deployed federated *Game Spaces* could use resources available in Deter Labs or EDURange (EDURange Project, 2013) environments and on dedicated equipment either in the Cloud or local network. This extensibility provides scalability, diversity and allows for extending the *Game Space* even with a small physical footprint. Additionally, it allows proprietary and critical
infrastructure systems to be shared without exposing intellectual property or production systems to risk.

Because of the nature of Cyber Operations simulations, if the Game Space is connected via the Internet or other non-isolated environments, care should be taken to contain all simulation activity within the Game Space.

Telemetry, Visualization and Analytics

The elements within the Game Space can provide valuable information in the form of Telemetry. Telemetry is data provided by simulation elements that can be used to provide visibility into significant simulation events. This information can be used within the simulation for managing the simulation. Telemetry data is collected from within the simulation and from other supporting platforms. Telemetry data can come from many sources, including; logs, alerts, traffic flows and performance monitoring tools.

Visualization and Analytics are very powerful tools and can add a new dimension to simulations, making them more effective. However, it’s important to consider the different perspectives. There are four perspectives to consider:

- **Attacker Perspective** – The view the offensive actor has or should have.
- **Defender Perspective** – The view the defensive actor has or should have.
- **Simulation Facilitator Perspective** – Has visibility to all available Telemetry data.
- **Scoreboard Perspective** – The view available to all Actors, Simulation Facilitators and external observers.

To create the appropriate view and align with the assessment Objectives Telemetry data should be filtered and only shared with the appropriate entities at the appropriate time. This is called Perspective Filtering.

As a general rule, it is better to collect too much data then not enough. Once the data is collected, collated and available, numerous transformations are possible.

8 The transformation of simulation telemetry into a meaningful graphic representation.
9 A term for the collection and review of data for meaningful and patterns.

Bryan K. Fite;bfite@meshco.com
(Analytics) and can take the form of automated, manual or ad hoc reporting. Reporting data can be used to support assessment, attestation and scoring.

Dedicated, Virtual and Cloud Platforms

SDL implementations can be deployed on dedicated hardware and software platforms, in private virtualized environments, in shared tenant *Cloud* environments or integrated with other simulated environments. Simulation implementations based on a standard *SDL* approach abstract the *Primitives* from the actual platform used to host the simulation. This allows for easy migration from one type of platform to another and easy integration between simulation environments implemented on different platforms.

Figure 1 depicts a Dedicated Physical Simulation Environment. All of the simulation *Objective Assets* are physical computers running a single dedicated operating system connected to a shared OSI Layer 1/2/3 (International Organization for Standardization, 1996) network sometimes referred to as the *Game Space*. Other simulation elements are represented, including *Actor Platform, Networks, Telemetry Platform* and *Simulation Management Platform*.
Figure 2 shows how this changes when a Private Virtualized Simulation Environment is used to host the Game Space. All Objective Assets are part of the same OSI Layer 2/3 network and share the same physical hardware running virtualized...
operating systems on a shared hypervisor.
There are many advantages to this configuration over its physical counterpart as it requires fewer physical components, makes the platform more portable and masks many of the underlying complexities associated with incompatible and diverse hardware.
Figure 3 shows Cloud Based Simulation Environment which is a virtualized platform residing inside of a Cloud Service Provider (CSP) environment, also known as a shared tenant environment. In this configuration, all Objective Assets, OSI Layer 2/3 networking, Telemetry feeds and simulation management interfaces reside within the CSP’s environment. However, additional simulation management and Telemetry interfaces can be located outside of the CSP environment. The simulation participants can connect to the Game Space via the Internet, VPN or CSP’s domain.

Figure 4 Shows a Federated Cloud Based Simulation Environment and depicts two Cloud-based simulation environments that are integrated across the Internet via OSI
Layer 3 protocols. This allows the simulation to span physical and virtual domains but appear as a single interconnected environment. The Telemetry Platform and Simulation Management Console can exist inside or outside the CSP environments.

There are many factors that go into choosing the most appropriate simulation platform. However, cost, performance, access and agility (ease of implementation and change) are the primary considerations. For example, a Dedicated Physical Simulation Environment implementation might provide the performance and agility desired but does not easily accommodate remote users. Therefore, it might be more advantageous to use a CSP platform instead, which would allow simulation participants to access the Game Space from anywhere on the Internet.

For a platform to be considered SDL compliant it must be able to accommodate ALL required Primitives and support the relevant Object Attributes. If the platform cannot accommodate the relevant Object Attributes it is not a candidate for that specific simulation scenario.

Assessment and Scoring

The flexibility of this approach supports a myriad of different configurations, which in turn allow for assessment of many characteristics. It is important to define the specific assessment objective and design the simulation accordingly.

Baselining the Game Space is an important part of simulation preparation, especially if the simulation requires forensic attestation to validate the assessment objective. Baselining involves but is not limited to; identifying the known Attack Surface and Attack Vectors, creating checksums, maintaining change logs and creating versioned Node images.

Simulations can use Fault Injection and Vulnerability Injection to modify the known Attack Surface. This can aid in assessment scoring by assigning points to Declared Objectives. Achieving Declared Objectives, allow the Actor to score the associated points.
Automated or manual scoring systems can be used. However, to preserve the integrity of the scoring system the maximum possible score and how scoring elements will be verified must be determined prior to the start of a simulation.

4. Practical Application Use Cases

The flexible and modular nature of the SDL approach makes it easy to create purpose-built, scalable simulations for immersive training, standardized assessment and operational modeling.

Use Case 1

“EDURange is a National Science Foundation funded project with the aim of building cloud-based interactive security exercises.” (EDURange Project, 2013 p.edurange). As part of the EDURange project, there was a need to create simulation environments in a structured and automated way.

The project team adopted the SDL approach, creating Scenarios and defining the Objects in terms of the scenario Primitives. They further transformed the SDL scenarios into configuration files written in Yet Another Markup Language (YAML) and which can easily be parsed. The YAML configuration files were then used to generate dynamic simulation environments within a Cloud Service Provider environment.

Each simulation can have the same Objectives and Constraints but with variable Object attributes. The implementation can generate large numbers of “unique” simulations but with a consistent training and assessment capability, allowing scalability and re-use for continuing assessment.

Use Case 2

Information Operations (IO), also known as Cyber Operations, encompasses the entire spectrum of Offensive and Defensive computing capabilities. “To succeed, it is necessary for US forces to gain and maintain information superiority.” (US Chairman of the Joint Chiefs of Staff, 2006 p.22) The US Joint Forces doctrine (US Chairman of the Joint Chiefs of Staff, 2006) identifies 11 capabilities that need to be developed and perfected in order for this to happen. The SDL approach is perfectly aligned with that
mission and provides a platform for rapidly developing these 11 capabilities: Destroy, Disrupt, Degrade, Deny, Deceive, Exploit, Influence, Protect, Detect, Restore and Respond.

The development of skills, techniques, tactics and strategies associated with effective Cyber Operations requires the ability to test said capabilities. Using simulations to model complex scenarios without putting real assets at risk is a valuable practice. Once tested and proven in the simulation, the capability can be confidently promoted to field operations.

Simulations can also produce predictive adversarial analysis, which can be used to develop effective counter measures. The speed and flexibility afforded SDL simulations can aid in training and assessing large numbers of warfighters. The talent pool can be ranked using assessment scoring, which can identify superior candidates as well as areas of improvement. Using the SDL approach, organizations can share assessment rankings without exposing sensitive internal operational details. This has special significance within the context of the Government, Academia and Corporate ecosystems charged with protecting the world’s critical infrastructure.

5. Summary

A reasonable approach to the current shortage of trained and experienced Cyber Operations Specialists is to use simulations to foster training, assessment and tool development though a standardized approach.

Simulations, security competitions and training platforms should adopt an SDL approach to improve simulation effectiveness, drive assessment standardization and support transportability. Specific benefits of the SDL approach include but are not limited to: making simulations more engaging and effective training tools, standardizing the assessment criteria across platforms, automating simulation creation and developing advanced adversarial modeling capabilities to keep pace with evolving threats.

The practice of using simulations to support training and assessment for Cyber security purposes warrants consideration and public discourse, given the number of practical use cases that can be articulated. This paper has attempted to establish the
fundamentals for a standards-based approach using core Objects and a standard SDL to support practical use cases and provide a vision of what is possible. As the SDL approach matures and is adopted in the field, new applications and innovations will materialize, supporting the needs of stakeholders practicing in the Cyber Domain. Further, this paper is intended as an ‘a call to action’ for the creation of an open standard to describe simulations for the benefit of the wider community.
6. References

http://leonardodavinci.stanford.edu/submissions/clabaugh/history/leonardo.html

Bryan K. Fite;bfite@meshco.com
7. Appendix A: Simulations

This section contains a list of well-known simulations. They vary widely in structure and purpose. This does not constitute a complete list of all simulations nor an endorsement of any specific simulation.

<table>
<thead>
<tr>
<th>Simulation Name</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyber Olympics</td>
<td>http://www.cyberlympics.org/</td>
<td>Global Assessment Competition</td>
</tr>
<tr>
<td>Deter</td>
<td>http://deter-project.org/</td>
<td>Cyber Research Project Foundation Funded Competitive Security Exercises</td>
</tr>
<tr>
<td>EDURange</td>
<td>http://blogs.evergreen.edu/edurange/</td>
<td></td>
</tr>
<tr>
<td>National Collegiate Cyber Defense Competition</td>
<td>http://www.nationalccdc.org/</td>
<td>Collegiate Cyber Competition</td>
</tr>
<tr>
<td>Netwars</td>
<td>http://www.sans.org/netwars</td>
<td>SANS Training Platform</td>
</tr>
<tr>
<td>Packetwars™</td>
<td>http://packetwars.com</td>
<td>Cyber Sport: Information Operations Training and Assessment Platform</td>
</tr>
<tr>
<td>Trace Fire</td>
<td>http://csr.lanl.gov/tf/</td>
<td>Forensic Incident Response Exercise</td>
</tr>
</tbody>
</table>
8. Appendix B: Lexicon

This section contains a combination of terms, acronyms and definitions. Many are indicated throughout this document as capitalized and/or in italics. Additional terms, not used within the document, are included because of their general use within the domain so this Appendix can serve as a general reference.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>A participant in an active campaign, scenario or simulation. They play one of several roles; attacker, defender, stakeholder or observer.</td>
</tr>
<tr>
<td>Actor Platform</td>
<td>The computing device, typically a node, used by an actor in an active campaign to achieve an objective. Is also considered an asset.</td>
</tr>
<tr>
<td>Adversary</td>
<td>An actor whose objectives and motivations put them in competition or conflict with another actor.</td>
</tr>
<tr>
<td>Analytics</td>
<td>A term for the collection and review of data for meaningful and patterns.</td>
</tr>
<tr>
<td>ARP (acronym)</td>
<td>Address Resolution Protocol (see ARP)</td>
</tr>
<tr>
<td>ARP</td>
<td>A method used to resolve network layer addresses to link layer addresses.</td>
</tr>
<tr>
<td>ARP Table</td>
<td>Memory resident index of network layer addresses mapped against link layer addresses.</td>
</tr>
<tr>
<td>Artifact</td>
<td>Is a type of primitive object in the form of a file (text, audio, graphic or video) or credentials (account, username, password or key material).</td>
</tr>
<tr>
<td>Asset</td>
<td>Is a resource of tactical or strategic value, which can take the form of a human, object or capability</td>
</tr>
<tr>
<td>Attack Path</td>
<td>Refers to the specific route selected by an adversary out of all the known avenues of compromise.</td>
</tr>
<tr>
<td>Attack Surface</td>
<td>Refers to the total known avenues of compromise.</td>
</tr>
<tr>
<td>Attack Vector</td>
<td>Refers to the specific route selected by an adversary out of all the known avenues of compromise.</td>
</tr>
<tr>
<td>Attribution</td>
<td>The ability to identify a specific adversary or actor based on key indicators or forensic evidence.</td>
</tr>
<tr>
<td>Baselining</td>
<td>The act of defining a specific threshold associated with the normal operating parameters of a system.</td>
</tr>
</tbody>
</table>

Bryan K. Fite; bfite@meshco.com
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battle Node</td>
<td>An actor’s platform within a Packetwars™ simulation.</td>
</tr>
<tr>
<td>Battle Space</td>
<td>The logical environmental demarcation associated with a simulation.</td>
</tr>
<tr>
<td>Beach Head</td>
<td>Common term used to describe a foothold acquired by an actor used to establish a pivot point for exploitation and lateral movement.</td>
</tr>
<tr>
<td>Blue Team</td>
<td>Common term for describing a group of defenders. Used primarily in reference to assessment exercises or staged simulations in production environments.</td>
</tr>
<tr>
<td>Campaign</td>
<td>A group of adversary actions designed to achieve a specific objective, which can span multiple battles or simulations.</td>
</tr>
<tr>
<td>Cloud</td>
<td>A common term for a shared tenant computing environment.</td>
</tr>
<tr>
<td>CSP (acronym)</td>
<td>Cloud Service Provider (see CSP)</td>
</tr>
<tr>
<td>CSP</td>
<td>An entity, normally commercial, which provides shared tenant computing services.</td>
</tr>
<tr>
<td>Combatant</td>
<td>One who is engaged in a struggle between one or more adversaries. Often used in Packetwars™ to describe players.</td>
</tr>
<tr>
<td>Constraint</td>
<td>A primitive object designed to shape a simulation by limiting the actor's range of motion and sphere of influence.</td>
</tr>
<tr>
<td>Counter Intelligence</td>
<td>The ability to use the enemies/advisory’s knowledge of a condition to direct the adversary by manipulating their interpretation of the facts and reality.</td>
</tr>
<tr>
<td>Crypto</td>
<td>Refers to the discipline of crypto, cryptographic algorithms and otherwise the ability to transform plain text to cipher text.</td>
</tr>
<tr>
<td>Cyber</td>
<td>A common prefix used to denote the use of electromagnetic communications systems amongst actors.</td>
</tr>
<tr>
<td>Cyber Domain</td>
<td>The total potential sphere of influence afforded an actor or group of actors in the electromagnetic communications spectrum.</td>
</tr>
<tr>
<td>Cyber Operations</td>
<td>Actions conducted amongst actors in the electromagnetic communications spectrum.</td>
</tr>
<tr>
<td>Cyber Operations</td>
<td>A trained and experienced subject matter expert operating in the electromagnetic communications spectrum.</td>
</tr>
<tr>
<td>Specialist</td>
<td></td>
</tr>
</tbody>
</table>
Deceive A tactic and strategy used by one actor against another actor with the intent of misleading by manipulating their perception of reality.

Declared Constraint A primitive object designed to shape a simulation by limiting the actor's range of motion and sphere of influence, which is declared and known to simulation participants.

Declared Objective A primitive object that defines the relative goals of a simulation, which is declared and known to simulation participants.

Defensive Fuzzing The practice of systematically responding to unsolicited communications from external nodes directed by potential adversaries with the intent of gaining some advantage of said potential adversary.

Degrade A tactic and strategy used by one actor against another actor with the intent of limiting the effectiveness or to otherwise retard an adversary's capability.

Deny A tactic and strategy used by one actor against another actor with the intent of preventing an adversary's access to a capability.

Destroy A tactic and strategy used by one actor against another actor with the intent of damaging an asset to the point that the adversary cannot exercise a capability.

Detect A tactic and strategy used by one actor against another actor with the intent of discovering intrusions or indicators of compromise.

Disrupt A tactic and strategy used by one actor against another actor with the intent of interrupting an adversary's flow of information.

Domain An area of expertise or logical demarcation used to group assets.

Edutainment A term used to describe the fusion of an educational experience and an entertainment experience.

Element A single discrete component of a simulation.

Emulation The ability, via software, to impersonate hardware via abstractions layers thereby allowing operating systems, applications and other software to execute on non-native hardware platforms.

Exfiltration The act of extracting an asset from a security domain operated by an adversary.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploit</td>
<td>A tactic and strategy used by one actor against another actor with the intent of using an adversary's capability against themselves.</td>
</tr>
<tr>
<td>Fault Injection</td>
<td>The act of inserting known bugs or configuration flaws into a simulation.</td>
</tr>
<tr>
<td>Forensics</td>
<td>The science of determining the details of an event using digital or physical evidence.</td>
</tr>
<tr>
<td>Fuzzing</td>
<td>The practice and technique of populating computer interfaces with random, oversized and otherwise malformed input with the intent of exposing vulnerabilities.</td>
</tr>
<tr>
<td>Game</td>
<td>An entertaining competition which has rules, competitors and a promised reward.</td>
</tr>
<tr>
<td>Game Space</td>
<td>The logical environmental demarcation associated with a competition.</td>
</tr>
<tr>
<td>Honeypot</td>
<td>A generic term used to describe a dummy/fake system, service or other simulation element for the purpose of enticing or deceiving an adversary into revealing themselves, intent or as a form of counter-intelligence.</td>
</tr>
<tr>
<td>Incident response</td>
<td>Refers to the practice of responding to an event in a pre-defined way, typically associated with security events.</td>
</tr>
<tr>
<td>Includes</td>
<td>The introduction of messages or artifacts into a simulation.</td>
</tr>
<tr>
<td>Influence</td>
<td>A tactic and strategy used by one actor against another actor with the intent of causing other actors to behave in a favorable way.</td>
</tr>
<tr>
<td>Injects</td>
<td>The introduction of messages or artifacts into a simulation.</td>
</tr>
<tr>
<td>IO (acronym)</td>
<td>Information Operations (see IO)</td>
</tr>
<tr>
<td>IO</td>
<td>Also known as Cyber Operations encompasses the entire spectrum of Offensive and Defensive computing capabilities.</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>A term used to describe the tactic of leveraging a compromised asset to compromise another asset with the intent of advancing a campaign.</td>
</tr>
<tr>
<td>Medium</td>
<td>The physical platform used to communicate messages between actors and nodes.</td>
</tr>
<tr>
<td>Message</td>
<td>A primitive object that communicates information, data or instructions between simulation elements.</td>
</tr>
</tbody>
</table>
Model

The physical, conceptual or mathematical representation of systems, processes and organizational elements and define the rules of their interactions.

Motivation

Tactical and strategic objective(s) that drive and influence adversary behavior.

Network

The communication path or paths between nodes, typically layer 1-3 of the OSI model (http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip)

Node

Object

A collection of predetermined attributes used to describe a simulation element.

Object Attributes

The characteristics that dictate how elements interact with each other inside a simulated environment.

Object ID

A unique identifier assigned to a simulation primitive.

Object Type

Simulation element classification designation with predetermined attributes that dictate which characteristics are mandatory and optional.

Objective

A primitive object that defines the relative goals of a simulation.

Packetwars™

A cyber-sport which simulates offensive and defensive computing scenarios for training, assessment and entertainment.

Perspective

Filtering

The practice of creating the appropriate telemetry data view based on actor role and assessment objectives.

Primitives

The 9 fundamental object types used to define simulations in the Simulation Definition Language

Process

A primitive object describing the workflow associated with a pre-defined simulation element interaction.

Protect

A tactic and strategy used by one actor against another actor with the intent of guard an asset against compromise.

Red Team

Common term for describing a group of attackers. Used primarily in reference to assessment exercises or staged simulations in production environments.

Bryan K. Fite;bfite@meshco.com
Respond
A tactic and strategy used by one actor against another actor with the intent of reacting to an adversary in the optimum way.

Restore
A tactic and strategy used by one actor against another actor with the intent of bringing assets back to a known good functional state.

Route
The logical path information takes between nodes and networks.

Routing Table
An index of the logic paths information takes between specific nodes and networks.

Scenario
A logical construct providing the context and all other required simulation elements in a human friendly format.

Scenario Definition Language
A way to model Cyber Operations Simulation elements by abstracting the primitives as objects and describing their interaction.

Security Domain
A demarcation that defines a logical or physical within the control or custodianship of an actor.

Shared Tenant Environment
Sometimes referred to as "The Cloud". This computing environment leverages a common infrastructure to provide services to multiple entities, typically as part of a commercial operation.

Simulation
An artificial construct designed to emulate a real world process or system over time.

Simulation Management Console
The node used to control elements within an training or assessment environment.

Simulation Network
The communication environment hosting simulation assets sometimes referred to as the Game Space.

Software
Operating system, application or service.

Sphere Of Influence
The breadth and depth of an actor's capabilities in relation to another actor or actors.

Target
An identified objective usually considered an asset.

Telemetry
Data provided by simulation elements that can be used to provide visibility into significant simulation events.

Telemetry Platform
The infrastructure for the collection, transformation and consumption of simulation data feeds.

Trust Boundary
The physical or virtual interface between two unlike security domains.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universe</td>
<td>Refers to simulated environment that is made up of a combination of primitive objects and governed by the rules that dedicate how those primitive objects interact with each other. The rules governing a particular simulation may or may not align with the rules governing the "real world"; physics, chemistry, biology and the like.</td>
</tr>
<tr>
<td>Visualization</td>
<td>The transformation of simulation telemetry into a meaningful graphic representation.</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>A bug, misconfiguration or other condition that exposes an asset to a specific threat.</td>
</tr>
<tr>
<td>Vulnerability Injection</td>
<td>Including a known bug or configuration flaw into a simulation, typically a bug with a publicly available exploit.</td>
</tr>
<tr>
<td>YAML (acronym)</td>
<td>Yet Another Markup Language (see YAML)</td>
</tr>
<tr>
<td>YAML</td>
<td>Is a human readable serialization standard for data and can be used for all programming languages.</td>
</tr>
</tbody>
</table>
9. Appendix C: Object Type Definitions

Object Type: Node
Required Attributes: Name, Host / Gateway Flag, OS, Interface Address(es) and listening ports
Optional Attributes: Accounts, Applications, Artifact and Services

Syntax:
Object ID (unique number): Object Type (Node): Name (Name): H/G (H or G): OS (OS ID): Interface address (IP address, 1 IP address2, IP address3...): Listening Ports (TCP Port1, Port2, Port3...): User Account (User1, User2, User3...)

Example:

Object Type: Network
Required Attributes: Name, Layer 1 (Protocol, Address and Security Domain [Public, Private or DMZ]), Layer 2 (Protocol, Address and Security Domain [Public, Private or DMZ]), Layer 3 (Port, Protocol, Address and Security Domain [Public, Private or DMZ]).
Optional Attributes: Routing, Capacity, ACL’s and Local/Remote flag

Syntax:

Object Type: Software
Required Attributes: Name, Vendor, Version
Optional Attributes: Dependencies, requirements, Files, Files Sizes, File Hashes, Configuration and Comments

Syntax:
Object ID (unique number): Object Type (Software): Name (Name): Vendor (vendor name): Version (version#): Files (file1, file2, file3...), File Sizes (FS1, FS2, FS3...), File Hashes (FH1, FH2, FH3...), Comments (comments-description of software function)

Object Type: Artifact
Required Attributes: Name, Media Type (service element, written/physical, email, sms/txt, file), Artifact Type (binary, service element, identity element, informational message)
Optional Attributes: Comment

Syntax:
Object ID (unique number): Object Type (Artifact): Name (Name): Media Type (SE, W/P, E,S/T or F): AT (B,SE,IE or IM): Comment (context)
Object Type: Constraint
Required Attributes: Name, Constraint Type (Environmental or capability), Constraint Description
Optional Attributes: Comments

Syntax:
Object ID (unique number): Object Type (Constraint): Name (Name): CT (E or C):
Constraint (description): Comments (context)

Object Type: Objective
Required Attributes: Name, Objective Class (Attacker, Defender or Assessment), Objective Type (Intel, Compromise, Escalate Privilege, Exfiltration, Destroy, Disrupt, Degrade, Deny, Deceive, Exploit, Influence, Protect, Detect, Restore and Respond), Objective and Attestation Method (key, flag, file, shared secret, hash file, moderator observation or, demonstrable capability)
Optional Attributes: Motivation Qualifiers and Comments

Syntax:
Object ID (unique number): Object Class (Objective Class): Object Type (I,C,EP,E,D1,D2,D3,D4 or D5): Name (Name): Objective (objective): Attestation Method (method): Comments (context)

Object Type: Actor
Required Attributes: Name, Alignment (Attacker, Defender, Both or Neutral), Actor Class (Adversary type), Role
Optional Attributes: Capabilities (Skill Index), Handicap and Comments

Syntax:
Object ID (unique number): Object Type (Actor): Name (Name): Alignment (alignment type): Actor Class (Adversary/Worker): Capabilities (Skill1, Rating1, Skill2, Rating2, Skill3, Rating3...)

Object Type: Process
Required Attributes: Name, Function Description, Function Flowchart
Optional Attributes: Implementation (manual or automated) and Comments

Syntax:
Object ID (unique number): Object Type (Process): Name (Name): Function Description (human friendly description of process): Implementation (automated script): Comments (context)

Object Type: Message
Required Attributes: Name, Media Type (live, written/physical, email, sms/txt, file, audio or video), Broadcast/Directed flag, encrypted/obfuscated/plaintext switch, Message type (scenario setup or inject), Message Content
Optional Attributes: TBD

Bryan K. Fite; bfite@meshco.com
Syntax:
Object ID *(unique number)*: **Object Type** *(Message)*:**Media Type** *(L,W/P,E,S/T,F,A or V)*:**B/D** *(B or D)*:**E/O/P** *(E, O or P)*:**Message Type** *(S or I)*:**Message Content** *(message*
<table>
<thead>
<tr>
<th>SANS Cairo February 2020</th>
<th>Cairo, EG</th>
<th>Feb 15, 2020 - Feb 20, 2020</th>
<th>Live Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS Brussels February 2020</td>
<td>Brussels, BE</td>
<td>Feb 17, 2020 - Feb 22, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Scottsdale 2020</td>
<td>Scottsdale, AZUS</td>
<td>Feb 17, 2020 - Feb 22, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS San Diego 2020</td>
<td>San Diego, CAUS</td>
<td>Feb 17, 2020 - Feb 22, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>Open-Source Intelligence Summit & Training 2020</td>
<td>Alexandria, VAUS</td>
<td>Feb 18, 2020 - Feb 24, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Training at RSA Conference 2020</td>
<td>San Francisco, CAUS</td>
<td>Feb 23, 2020 - Feb 24, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Zurich February 2020</td>
<td>Zurich, CH</td>
<td>Feb 24, 2020 - Feb 29, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Secure India 2020</td>
<td>Bangalore, IN</td>
<td>Feb 24, 2020 - Feb 29, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Manchester February 2020</td>
<td>Manchester, GB</td>
<td>Feb 24, 2020 - Feb 29, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Jacksonville 2020</td>
<td>Jacksonville, FLUS</td>
<td>Feb 24, 2020 - Feb 29, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Secure Japan 2020</td>
<td>Tokyo, JP</td>
<td>Mar 02, 2020 - Mar 14, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>Blue Team Summit & Training 2020</td>
<td>Louisville, KYUS</td>
<td>Mar 02, 2020 - Mar 09, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Northern VA - Reston Spring 2020</td>
<td>Reston, VAUS</td>
<td>Mar 02, 2020 - Mar 07, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Munich March 2020</td>
<td>Munich, DE</td>
<td>Mar 02, 2020 - Mar 07, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS St. Louis 2020</td>
<td>St. Louis, MOUS</td>
<td>Mar 08, 2020 - Mar 13, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Prague March 2020</td>
<td>Prague, CZ</td>
<td>Mar 09, 2020 - Mar 14, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Dallas 2020</td>
<td>Dallas, TXUS</td>
<td>Mar 09, 2020 - Mar 14, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>Wild West Hackin Fest 2020</td>
<td>San Diego, CAUS</td>
<td>Mar 10, 2020 - Mar 11, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Doha March 2020</td>
<td>Doha, QA</td>
<td>Mar 14, 2020 - Mar 19, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Norfolk 2020</td>
<td>Norfolk, VAUS</td>
<td>Mar 16, 2020 - Mar 21, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Kuwait March 2020</td>
<td>Salmiya, KW</td>
<td>Mar 21, 2020 - Mar 26, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Dubai February 2020</td>
<td>OnlineAE</td>
<td>Feb 15, 2020 - Feb 20, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS OnDemand</td>
<td>Books & MP3s OnlyUS</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
</tbody>
</table>