homepage
Menu
Open menu
  • Training
    Go one level top Back

    Training

    • Courses

      Build cyber prowess with training from renowned experts

    • Hands-On Simulations

      Hands-on learning exercises keep you at the top of your cyber game

    • Certifications

      Demonstrate cybersecurity expertise with GIAC certifications

    • Ways to Train

      Multiple training options to best fit your schedule and preferred learning style

    • Training Events & Summits

      Expert-led training at locations around the world

    • Free Training Events

      Upcoming workshops, webinars and local events

    • Security Awareness

      Harden enterprise security with end-user and role-based training

    Featured: Solutions for Emerging Risks

    Discover tailored resources that translate emerging threats into actionable strategies

    Risk-Based Solutions

    Can't find what you are looking for?

    Let us help.
    Contact us
  • Learning Paths
    Go one level top Back

    Learning Paths

    • By Focus Area

      Chart your path to job-specific training courses

    • By NICE Framework

      Navigate cybersecurity training through NICE framework roles

    • DoDD 8140 Work Roles

      US DoD 8140 Directive Frameworks

    • By European Skills Framework

      Align your enterprise cyber skills with ECSF profiles

    • By Skills Roadmap

      Find the right training path based on critical skills

    • New to Cyber

      Give your cybersecurity career the right foundation for success

    • Leadership

      Training designed to help security leaders reduce organizational risk

    • Degree and Certificate Programs

      Gain the skills, certifications, and confidence to launch or advance your cybersecurity career.

    Featured

    New to Cyber resources

    Start your career
  • Community Resources
    Go one level top Back

    Community Resources

    Watch & Listen

    • Webinars
    • Live Streams
    • Podcasts

    Read

    • Blog
    • Newsletters
    • White Papers
    • Internet Storm Center

    Download

    • Open Source Tools
    • Posters & Cheat Sheets
    • Policy Templates
    • Summit Presentations
    • SANS Community Benefits

      Connect, learn, and share with other cybersecurity professionals

    • CISO Network

      Engage, challenge, and network with fellow CISOs in this exclusive community of security leaders

  • For Organizations
    Go one level top Back

    For Organizations

    Team Development

    • Why Partner with SANS
    • Group Purchasing
    • Skills & Talent Assessments
    • Private & Custom Training

    Leadership Development

    • Leadership Courses & Accreditation
    • Executive Cybersecurity Exercises
    • CISO Network

    Security Awareness

    • End-User Training
    • Phishing Simulation
    • Specialized Role-Based Training
    • Risk Assessments
    • Public Sector Partnerships

      Explore industry-specific programming and customized training solutions

    • Sponsorship Opportunities

      Sponsor a SANS event or research paper

    Interested in developing a training plan to fit your organization’s needs?

    We're here to help.
    Contact us
  • Talk with an expert
  • Log In
  • Join - it's free
  • Account
    • Account Dashboard
    • Log Out
  1. Home >
  2. Blog >
  3. NTFS $I30 Index Attributes: Evidence of Deleted and Overwritten Files
370x370_Chad-Tilbury.jpg
Chad Tilbury

NTFS $I30 Index Attributes: Evidence of Deleted and Overwritten Files

September 20, 2011

Daunting as it may seem, one of the most wonderful aspects of Windows forensics is its complexity. One of the fascinating aspects of digital forensics is how we often leverage conventional operating system features to provide information peripheral to their original design. One such feature is the Windows NTFS Index Attribute, also known as the $I30 file. Knowing how to parse $I30 attributes provides a fantastic means to identify deleted files, including those that have been wiped or overwritten.

A Simple Description of Index Attributes

Many popular file systems such as FAT and Unix store directory information as a simple flat file. Recognizing efficiency issues with lookups within large flat files, NTFS employed B-tree indexing for several of its building blocks, providing efficient storage of large data sets and very fast lookups. As forensic examiners, we can take advantage of the NTFS B-tree implementation as another source to identify files that once existed in a given directory.

Similar to Master File Table (MFT) entries in NTFS, index entries within the B-tree are not completely removed when file deletion occurs. Instead, they are marked as deleted using a corresponding $BITMAP attribute. Additionally, the size of index nodes can vary, particularly for large filenames, providing a type of slack that can hold previously existing filenames. Since B-tree nodes are regularly shuffled to keep the tree balanced, file name remnants are scattered and it is a common occurrence to find duplicate nodes referencing the same file. Of course, the flip side of re-balancing a B-tree is that it often results in data within unallocated nodes being overwritten. Thus while we commonly find evidence of long lost files within $I30 attributes, there is no guarantee they will be present.

Interestingly, NTFS directory index entries utilize a $FILE_NAME attribute type to store file information within the index. You may recall that this is the same attribute employed by the MFT and hence it provides a treasure trove of information about the file:

  • Full filename
  • Parent directory (useful if you recover a $I30 file in free space and do not know its origin)
  • File size
  • Creation Time
  • Modification Time
  • MFT Change Time
  • Access Time

Timestamps Found Within Index Attributes

A key distinction when reviewing timestamps stored within $I30 files is that these timestamps are $FILE_NAME attribute timestamps and not $STANDARD_INFORMATION timestamps that we regularly view in Windows Explorer, your favorite GUI forensics tool, and within timelines. This distinction deserves a blog post of its own, but suffice to say $FILE_NAME times are often updated in a much different (and even more arbitrary) set of circumstances. Fortunately, for $I30 files, I have observed that this set of timestamps tends to mirror those that are in $STANDARD_INFORMATION. Thus even if the original file no longer exists, we may still be able to identify its name, file size, and original timestamps!

$I30 Files in Practice

A few examples can better illustrate how useful these entries can be. I recently had a case where it appeared a large number of files were moved to the Recycle Bin, which was subsequently emptied and most of the corresponding INFO2 file was reallocated. The $I30 file still contained information on many of those files (albeit renamed according to the Recycle Bin schema). By analyzing the MFT Change Times of the $I30 index entries, I was able to determine when the user placed each file within the Recycle Bin, and collect a list of what types of files were "recycled" using their file extensions.

In a malware or intrusion case, $I30 entries provide knowledge of a file's existence and a separate and distinct set of timestamps to compare against for signs of tampering. This is a great example of why it is extremely difficult for malware or an anti-forensics tool to reliably change all of the corresponding timestamps within a file system.

Evidence may still be found in Index Attributes even if wiping or anti-forensics software has been employed. Figure 1 shows the parsed output for a $I30 file from the Windows directory. Two deleted index entries have been highlighted. In this example, a file named fgdump.exe was overwritten using a software tool named BCWipe. The original filename was overwritten with random characters (sqhyoeop.roy) and the Modified, Accessed, and Created time stamps were set to fictitious values. Since MFT Change Times cannot be directly modified via the Windows API, that timestamp still accurately reflects when the wipe occurred. Of course the interesting part of this example is that evidence of both the original file and the wiping artifacts are contained in the slack of the $I30 file.

WipeExample-300x122.jpg

Figure 1: Evidence Found in $I30 of Use of File Wiping Software

Exporting NTFS Index Attributes

One of the primary reasons many examiners don't utilize index attribute files is because getting access to them is not always intuitive. I congratulate Access Data and their Forensic Toolkit (FTK) for clearly identifying $I30 indexes for as long as I can remember. Figure 2 shows what they look like in FTK. Simply right-click on the $I30 file to export from the image.

FTK_I30_2-300x231.jpg

The Sleuth Kit (TSK) also does an excellent job with Index Attributes, although the interface takes a little practice. Figure 3 shows output from the TSK istat tool for a RECYCLER child directory. Near the bottom of the output we see the NTFS attribute list.

You may notice multiple attributes using the $I30 name in Figure 3. Brian Carrier's File System Forensic Analysis book dissects each of these attributes, and the simple explanation is they are all components of the overall Index Attribute [1]. To export the $I30 attribute from this directory, we use the icat tool from TSK and give it the MFT entry number of the directory along with the identifier for the $INDEX_ALLOCATION attribute, which in this case is "160-4" (Figure 4). This output is redirected into a file named, $I30.

SleuthKit_icat-300x45.jpg

To identify index attributes in EnCase, an EnScript is required. An Enscript ships within the stock Examples folder and is named, "Index buffer reader". This script can be pointed at a specific directory, a collection of tagged directories, or the entire file system. The results are nicely bookmarked and the entries are parsed within each bookmark's comments field. To export the $I30 file in EnCase, you first select the "Index Buffer" that you are interested in within the Tree Pane, select all within the View Pane, and right-click and select Export (Figure 5).

EnCase_I30_Parse2-300x202.jpg


Parsing Index Attributes

The format of $I30 entries is well known and extensively documented. However, indexes commonly reach sizes in the hundreds of kilobytes and hold thousands of entries (theoretically they could have billions of entries). It is tiresome work to do the parsing by hand. Of the previously covered forensic suites, only EnCase has a native ability to parse the files, though the output is very difficult to use and analyze. Luckily, Willi Ballenthin recently released an open source tool that does an excellent job of parsing $I30 files [2]. It formats output as CSV, XML, or bodyfile (for inclusion into a timeline) and has a feature to search remnant space for slack entries. The tool is written in Python and sample command line follows:

python INDXParse.py -d $I30 > $I30_Parse.csv

The resulting file can be opened and filtered in Excel (CSV output is the default). Notice the file names, file size, and four timestamps displayed in the output shown in Figure 6. Several deleted index node entries (slack) are also displayed within the output.

INDXParseOut-300x130.jpg


References

[1] File System Forensic Analysis, Brian Carrier (included with the SANS Forensics 508 Course)

[2] INDXParser.py by Willi Ballenthin

[3] John McCash previously discussed Index Attributes in this blog post

Chad Tilbury, GCFA, has spent over twelve years conducting computer crime investigations ranging from hacking to espionage to multi-million dollar fraud cases. He teaches FOR500 Windows Forensics and FOR508 Advanced Computer Forensic Analysis and Incident Response for the SANS Institute. Find him on Twitter @chadtilbury or at http://ForensicMethods.com.

Share:
TwitterLinkedInFacebook
Copy url Url was copied to clipboard
Subscribe to SANS Newsletters
Receive curated news, vulnerabilities, & security awareness tips
United States
Canada
United Kingdom
Spain
Belgium
Denmark
Norway
Netherlands
Australia
India
Japan
Singapore
Afghanistan
Aland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius, and Saba
Bosnia And Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Cook Islands
Costa Rica
Cote D'ivoire
Croatia (Local Name: Hrvatska)
Curacao
Cyprus
Czech Republic
Democratic Republic of the Congo
Djibouti
Dominica
Dominican Republic
East Timor
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard And McDonald Islands
Honduras
Hong Kong
Hungary
Iceland
Indonesia
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Republic Of
Kosovo
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macau
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States Of
Moldova, Republic Of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Islands
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Bartholemy
Saint Kitts And Nevis
Saint Lucia
Saint Martin
Saint Vincent And The Grenadines
Samoa
San Marino
Sao Tome And Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
South Africa
South Georgia and the South Sandwich Islands
South Sudan
Sri Lanka
St. Helena
St. Pierre And Miquelon
Suriname
Svalbard And Jan Mayen Islands
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania, United Republic Of
Thailand
Togo
Tokelau
Tonga
Trinidad And Tobago
Tunisia
Turkey
Turkmenistan
Turks And Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying Islands
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis And Futuna Islands
Western Sahara
Yemen
Zambia
Zimbabwe

By providing this information, you agree to the processing of your personal data by SANS as described in our Privacy Policy.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Tags:
  • Digital Forensics, Incident Response & Threat Hunting

Related Content

Blog
Blog Teaser: Shoplifting2.0 340x340.jpg
Digital Forensics, Incident Response & Threat Hunting
May 21, 2025
Shoplifting 2.0: When it’s Data the Thieves Steal
Identify steps organisations can implement to protect against Scattered Spider and DragonForce
Adam Harrison
Adam Harrison
read more
Blog
emerging threats summit 340x340.png
Digital Forensics, Incident Response & Threat Hunting, Offensive Operations, Pen Testing, and Red Teaming, Cyber Defense, Industrial Control Systems Security, Cybersecurity Leadership
May 14, 2025
Visual Summary of SANS Emerging Threats Summit 2025
Check out these graphic recordings created in real-time throughout the event for SANS Emerging Threats Summit 2025
No Headshot Available
Alison Kim
read more
Blog
powershell_option_340x340.jpg
Cyber Defense, Digital Forensics, Incident Response & Threat Hunting, Cybersecurity and IT Essentials, Offensive Operations, Pen Testing, and Red Teaming
July 12, 2022
Month of PowerShell - Windows File Server Enumeration
In this Month of PowerShell article we look at several commands to interrogate Windows SMB servers as part of our incident response toolkit.
Josh Wright - Headshot - 370x370 2025.jpg
Joshua Wright
read more
  • Company
  • Mission
  • Instructors
  • About
  • FAQ
  • Press
  • Contact Us
  • Careers
  • Policies
  • Training Programs
  • Work Study
  • Academies & Scholarships
  • Public Sector Partnerships
  • Law Enforcement
  • SkillsFuture Singapore
  • Degree Programs
  • Get Involved
  • Join the Community
  • Become an Instructor
  • Become a Sponsor
  • Speak at a Summit
  • Join the CISO Network
  • Award Programs
  • Partner Portal
Subscribe to SANS Newsletters
Receive curated news, vulnerabilities, & security awareness tips
United States
Canada
United Kingdom
Spain
Belgium
Denmark
Norway
Netherlands
Australia
India
Japan
Singapore
Afghanistan
Aland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius, and Saba
Bosnia And Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Cook Islands
Costa Rica
Cote D'ivoire
Croatia (Local Name: Hrvatska)
Curacao
Cyprus
Czech Republic
Democratic Republic of the Congo
Djibouti
Dominica
Dominican Republic
East Timor
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard And McDonald Islands
Honduras
Hong Kong
Hungary
Iceland
Indonesia
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Republic Of
Kosovo
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macau
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States Of
Moldova, Republic Of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Islands
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Bartholemy
Saint Kitts And Nevis
Saint Lucia
Saint Martin
Saint Vincent And The Grenadines
Samoa
San Marino
Sao Tome And Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
South Africa
South Georgia and the South Sandwich Islands
South Sudan
Sri Lanka
St. Helena
St. Pierre And Miquelon
Suriname
Svalbard And Jan Mayen Islands
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania, United Republic Of
Thailand
Togo
Tokelau
Tonga
Trinidad And Tobago
Tunisia
Turkey
Turkmenistan
Turks And Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying Islands
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis And Futuna Islands
Western Sahara
Yemen
Zambia
Zimbabwe

By providing this information, you agree to the processing of your personal data by SANS as described in our Privacy Policy.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
  • Privacy Policy
  • Terms and Conditions
  • Do Not Sell/Share My Personal Information
  • Contact
  • Careers
© 2025 The Escal Institute of Advanced Technologies, Inc. d/b/a SANS Institute. Our Terms and Conditions detail our trademark and copyright rights. Any unauthorized use is expressly prohibited.
  • Twitter
  • Facebook
  • Youtube
  • LinkedIn