homepage
Menu
Open menu
  • Training
    Go one level top Back

    Training

    • Courses

      Build cyber prowess with training from renowned experts

    • Hands-On Simulations

      Hands-on learning exercises keep you at the top of your cyber game

    • Certifications

      Demonstrate cybersecurity expertise with GIAC certifications

    • Ways to Train

      Multiple training options to best fit your schedule and preferred learning style

    • Training Events & Summits

      Expert-led training at locations around the world

    • Free Training Events

      Upcoming workshops, webinars and local events

    • Security Awareness

      Harden enterprise security with end-user and role-based training

    Featured: Solutions for Emerging Risks

    Discover tailored resources that translate emerging threats into actionable strategies

    Risk-Based Solutions

    Can't find what you are looking for?

    Let us help.
    Contact us
  • Learning Paths
    Go one level top Back

    Learning Paths

    • By Focus Area

      Chart your path to job-specific training courses

    • By NICE Framework

      Navigate cybersecurity training through NICE framework roles

    • DoDD 8140 Work Roles

      US DoD 8140 Directive Frameworks

    • By European Skills Framework

      Align your enterprise cyber skills with ECSF profiles

    • By Skills Roadmap

      Find the right training path based on critical skills

    • New to Cyber

      Give your cybersecurity career the right foundation for success

    • Leadership

      Training designed to help security leaders reduce organizational risk

    • Degree and Certificate Programs

      Gain the skills, certifications, and confidence to launch or advance your cybersecurity career.

    Featured

    New to Cyber resources

    Start your career
  • Community Resources
    Go one level top Back

    Community Resources

    Watch & Listen

    • Webinars
    • Live Streams
    • Podcasts

    Read

    • Blog
    • Newsletters
    • White Papers
    • Internet Storm Center

    Download

    • Open Source Tools
    • Posters & Cheat Sheets
    • Policy Templates
    • Summit Presentations
    • SANS Community Benefits

      Connect, learn, and share with other cybersecurity professionals

    • CISO Network

      Engage, challenge, and network with fellow CISOs in this exclusive community of security leaders

  • For Organizations
    Go one level top Back

    For Organizations

    Team Development

    • Why Partner with SANS
    • Group Purchasing
    • Skills & Talent Assessments
    • Private & Custom Training

    Leadership Development

    • Leadership Courses & Accreditation
    • Executive Cybersecurity Exercises
    • CISO Network

    Security Awareness

    • End-User Training
    • Phishing Simulation
    • Specialized Role-Based Training
    • Risk Assessments
    • Public Sector Partnerships

      Explore industry-specific programming and customized training solutions

    • Sponsorship Opportunities

      Sponsor a SANS event or research paper

    Interested in developing a training plan to fit your organization’s needs?

    We're here to help.
    Contact us
  • Talk with an expert
  • Log In
  • Join - it's free
  • Account
    • Account Dashboard
    • Log Out
  1. Home >
  2. Blog >
  3. A Sneak Peek at Pokemon Go Application Forensics
370x370_Cindy-Murphy.jpg
Cindy Murphy

A Sneak Peek at Pokemon Go Application Forensics

Go, Pokémon Go! I admit it. I was anxious to play Pokémon Go, the hot new "augmented reality" app. Not because I follow the newest styles and trends.

August 9, 2016

image.png

This post was originally posted on Murphy's Law Blog authored by SANS Certified Instructor Cindy Murphy

UPDATED 7/22/16 — Thanks to Warren Raquel (@warquel) a Senior Security Engineer at the National Center for Supercomputing Applications, Android location information has been SOLVED! See the Android Location Information section below.

"Some trainers have no fear. To them this is just one more challenge. They follow their hearts. That is what sets them apart, and will make them Pokémon Masters." — Miranda, Pokémon: The First Movie
Pokemon Go Gameplay

Go, Pokémon Go!

image.png

I admit it. I was anxious to play Pokémon Go, the hot new "augmented reality" app. Not because I follow the newest styles and trends. Not because I spend a lot of time playing games on my phone. Not because I wanted to join zombie-like hoards in blind pursuit of invisible pocket monsters. I was anxious to play after reading about the application's Gmail privacy issues. I really wanted to see what the app stores on the phone it's installed on.

And for that, I needed test phone data!

I installed the app on a test iPhone and Android devices, created a "Trainer" account with a test Gmail account, and went to work?. er, play. Sometimes it turns out that work and play are one and the same. In the name of science.

Shortly after installation, I found myself in position to capture a blue, swirly, Poliwag near a curb. A few seconds later, "Gotcha!" Less than a minute later, up popped a Pidgey, in the middle of the road. So I stopped to grab him too, fully aware that I was in the middle of the road. I quickly gained insight into how this game could get dangerous.

"Gotcha!"

image.png

Things got strange pretty quickly. As I walked down towards the Wisconsin National Guard, Pokémon Go alerted me that there was a Pokestop and two Pokémon to be captured — behind the fence. Restricted AreaI decided not to go there. And as I swung my cell phone camera towards the secured area, I wondered if the images I might capture were going anywhere. And if so, where? Hundreds and thousands of Trainers running around the world photographing every nook and cranny in the name of capturing imaginary creatures? Conspiracy theorists will be having a field day. Gate guards will be having headaches!

I returned to the Gillware offices to find that my research was generating interest and enthusiasm. Or maybe it's that I'm working with like-minded people. Either way, the Gillware gang was also busy gathering data for research purposes (and fun, too), and they were anxious to share what they were finding with me. So, we sat down at lunch and geeked out over the forensic possibilities. Here's a little bit of what we found:

Pokémon Go on iOS
The iOS test phone data I used contained data for a level 20 Pokémon Go trainer (that's a lot of research, right?). I performed a file system extraction using Cellebrite Physical Analyzer, and examined the data using a variety of mobile forensic tools — Physical Analyzer, Oxygen Forensics Suite 2015, and Magnet Axiom. The basic file system for the Pokémon Go app looks like this on iOS:

image.png

Forensic Artifacts — iOS

Much of the data we're interested in from a forensics standpoint on the iOS version of Pokémon Go is located in .plist files and .sqlite database files within the app. In fact, a number of the .sqlite database files located within the app contain embedded .plist files.

The com.nianticlabs.pokemongo.plist file contains the plain text Pokémon Go trainer user name and device information including the iPhone model number and iOS version, carrier information, and related data, and a hashed device ID.

image.png

iOS Date and Time Stamps

The data stored in the "bundles" directory was not in human readable format, and is encoded or encrypted. The date and time stamp for each of the blob-like files corresponds to when the game was being played. For now though, I have yet to answer the question about where those pictures are going, and also about how and if geo-location data related to user activity is stored within the app. If it is, it's likely in those mysterious "bundles," or maybe in the "com_upsight" folder.

The "com_upsight" sub directory in the Application Support folder contains three SQLite database files, each of which has multiple .plist formatted entries. A Google search shows that Upsight is a marketing and analytics platform for web & mobile application developers that assists in improving engagement and tracking user behavior. I'm still working on the .plist files stored there. Their dates and times also correspond with user activity. From a forensics standpoint, date and time stamps from these files can help us determine whether the game was being played when a particular incident happened.

Pokémon Go on Android
The Android test phone data I used contained data for a level 5 Pokémon Go trainer. I performed a file system extraction using Cellebrite Physical Analyzer, and examined the data using Physical Analyzer, Oxygen Forensics Suite 2015, and Magnet Axiom. The basic file system layout for the Pokémon Go app looks like this on Android:

image.png

The com.nianticlabs.pokemongo.PREFS.xml file contains the account name for the user in plain text:

image.png

Android Date and Time Stamps

Inside the app data for the Android device there are a variety of Pokémon Go "encounter" dates and times logged in the com.crittercism folder in the subdirectory named "f". Crittercism (now known as Apteligent) is an Application Performance Management system. I don't know at this point in my research whether all events are logged or only events related to errors. Either way, there are a large number of individual files with the naming format 1.1468422937026.00000000X (where X is a sequentially progressing number) which contain really interesting data.

When these files are sorted by date/time, the sequential nature of the file names is clearly noted.

Date and time information is contained in text within the file in the format "YYYY-MM-DDTHH:MM:SS.MMM+00000", in addition to specific information about the event being logged. I noted a 5 hour offset in the time stamp. For example, the time stamp "2016-07-13T17:55:06.986+0000" corresponds to a file dated 7/13/2016 at 10:55 PM.

Sequential log filesLogged events appear to include:

Application errors
Application loads
Session starts
Session finishes
Wild Pokémon encounters
Pokémon captures
Encounter updates
Successful encounters of wild Pokémon
Additions of wild Pokémon
Attempted encounters
Caught Pokémon
Cell removals
This is good for forensic examiners. If we need to know whether someone was playing Pokémon Go at the time of a particular incident — say for example an armed robbery or a traffic accident, these Android based application files will be of great assistance.

Each of these files is a logged event in plain text that gives a short explanation of the event being logged and the time stamp. Location Information appears to be identified as "cells" with a long numeric number. It seems logical that these cells are likely mapped to GPS coordinates, but I'm still researching this.

Android Location Information -UPDATED 7/22/16

Collaboration is an amazing and rewarding thing. Thanks to Warren Raquel (@warquel) a Senior Security Engineer at the National Center for Supercomputing Applications, the Android cell location mystery has been SOLVED! Warren somehow came across this post and reached out to me shortly after it was published to tell me he had some theories about the location cell identifiers I had described above. He asked for some test data to work with.

I was exceptionally happy to have a new member of team Pokémon Go Forensics, and obliged. I sent him six examples of various cell identifiers from different Crittercism log files. Here's what the data I sent him looked like:

crittercism cell logs

image.png

Warren theorized that the 19 digit cell ID number could be two concatenated numbers which, when divided by 1e6 resulted in lat/long information. I found this post, and thought he was likely onto something.We both went to work (or is it play?).

Warren took the cell ID numbers and played with them in various ways. Shortly later, he emailed me and sent me the cell numbers converted to Hex:

Int -> HEX

9801614157982728192->8806542540000000
9801614149392793600->8806542340000000
9801614203079884800->8806542fc0000000
9801614258914459648->8806543cc0000000
9801614157982728192->8806542540000000
9801614151540277248->88065423c0000000
And he apologized (yes, really!). He'd been wrong and messed up the conversions. It didn't work. He said he hoped he'd been of some small help. Are you kidding me? Every little bit helps. Knowing the wrong answers gets us closer to the right ones. That's science. Warren made some guesses (let's call these alternate theories) and we both went back to the drawing board.

"Gotcha!!!"

Warren emailed me this morning to let me know he'd had a Pokémon Go "Gotcha!" moment. He captured this difficult artifact with a great deal of persistence and diligence. The cell numbers refer to Google's representation of the global map in a Hilbert Curve. He used the s2 library in order to convert one of my example cell ids (8806542340000000). Here's the output:

>>> import s2
>>> str(s2.S2CellId_FromToken("8806542340000000").ToLatLng())
?[43.1182500, -89.3309966]\x00'
>>> s2.S2CellId_FromToken("8806542340000000").level()
15
Yep! That's right in the Gillware neighborhood! Here's what that location looks like on a map:

image.png

As far as the 19 digit encounter ID is concerned, Warren and I both think that it's likely a 64bit representation of a particular Pokémon that contains bits to represent characteristics like type of Pokémon, strength, and that sort of thing. I'll be looking into my Pokédex to make some comparisons, for sure. Thanks again, Warren (@warquel) for the time and effort you took researching this location artifact and figuring out the cell location mystery. Nicely done!

The Android App
I used the tools and tips from last week's HummingBad post to peek into the Pokémon Go app. There's a lot there to get through, but it gives some insight into some of what we see stored on the phone itself, and potentially about the way data is stored on the device and where it might go. Here's what the layout of the apps classes looks like in Dex2Jar:

App Structure

image.png

That's the way forensics goes most of the time, and part of why it's such an adventure. Anything you dig into can potentially send you down another interesting path in pursuit of forensic artifacts. And digging into an app like Pokémon Go is just as much fun (if not more) than playing the game itself.

Last opportunities to take FOR585 in 2016:

CLASSROOM TRAINING

SANS Virginia Beach 2016
Virginia Beach, VA | Aug 22 - Sept 2

SANS Network Security 2016
Las Vegas, NV | Sept 12 - 17 (Simulcast option)

Community SANS Madison FOR585
Madison, WI | Sept 19 - 24

SANS Baltimore 2016
Baltimore, MD | Oct 10 - 15

ONLINE TRAINING

Learn at your own pace with four months of online access:

  • Custom quizzes and labs
  • MP3 archives of course lectures
  • All printed books and required materials
Share:
TwitterLinkedInFacebook
Copy url Url was copied to clipboard
Subscribe to SANS Newsletters
Receive curated news, vulnerabilities, & security awareness tips
United States
Canada
United Kingdom
Spain
Belgium
Denmark
Norway
Netherlands
Australia
India
Japan
Singapore
Afghanistan
Aland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius, and Saba
Bosnia And Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Cook Islands
Costa Rica
Cote D'ivoire
Croatia (Local Name: Hrvatska)
Curacao
Cyprus
Czech Republic
Democratic Republic of the Congo
Djibouti
Dominica
Dominican Republic
East Timor
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard And McDonald Islands
Honduras
Hong Kong
Hungary
Iceland
Indonesia
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Republic Of
Kosovo
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macau
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States Of
Moldova, Republic Of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Islands
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Bartholemy
Saint Kitts And Nevis
Saint Lucia
Saint Martin
Saint Vincent And The Grenadines
Samoa
San Marino
Sao Tome And Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
South Africa
South Georgia and the South Sandwich Islands
South Sudan
Sri Lanka
St. Helena
St. Pierre And Miquelon
Suriname
Svalbard And Jan Mayen Islands
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania, United Republic Of
Thailand
Togo
Tokelau
Tonga
Trinidad And Tobago
Tunisia
Turkey
Turkmenistan
Turks And Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying Islands
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis And Futuna Islands
Western Sahara
Yemen
Zambia
Zimbabwe

By providing this information, you agree to the processing of your personal data by SANS as described in our Privacy Policy.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Tags:
  • Digital Forensics, Incident Response & Threat Hunting

Related Content

Blog
Blog Teaser: Shoplifting2.0 340x340.jpg
Digital Forensics, Incident Response & Threat Hunting
May 21, 2025
Shoplifting 2.0: When it’s Data the Thieves Steal
Identify steps organisations can implement to protect against Scattered Spider and DragonForce
Adam Harrison
Adam Harrison
read more
Blog
emerging threats summit 340x340.png
Digital Forensics, Incident Response & Threat Hunting, Offensive Operations, Pen Testing, and Red Teaming, Cyber Defense, Industrial Control Systems Security, Cybersecurity Leadership
May 14, 2025
Visual Summary of SANS Emerging Threats Summit 2025
Check out these graphic recordings created in real-time throughout the event for SANS Emerging Threats Summit 2025
No Headshot Available
Alison Kim
read more
Blog
powershell_option_340x340.jpg
Cyber Defense, Digital Forensics, Incident Response & Threat Hunting, Cybersecurity and IT Essentials, Offensive Operations, Pen Testing, and Red Teaming
July 12, 2022
Month of PowerShell - Windows File Server Enumeration
In this Month of PowerShell article we look at several commands to interrogate Windows SMB servers as part of our incident response toolkit.
Josh Wright - Headshot - 370x370 2025.jpg
Joshua Wright
read more
  • Company
  • Mission
  • Instructors
  • About
  • FAQ
  • Press
  • Contact Us
  • Careers
  • Policies
  • Training Programs
  • Work Study
  • Academies & Scholarships
  • Public Sector Partnerships
  • Law Enforcement
  • SkillsFuture Singapore
  • Degree Programs
  • Get Involved
  • Join the Community
  • Become an Instructor
  • Become a Sponsor
  • Speak at a Summit
  • Join the CISO Network
  • Award Programs
  • Partner Portal
Subscribe to SANS Newsletters
Receive curated news, vulnerabilities, & security awareness tips
United States
Canada
United Kingdom
Spain
Belgium
Denmark
Norway
Netherlands
Australia
India
Japan
Singapore
Afghanistan
Aland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antarctica
Antigua and Barbuda
Argentina
Armenia
Aruba
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius, and Saba
Bosnia And Herzegovina
Botswana
Bouvet Island
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Cook Islands
Costa Rica
Cote D'ivoire
Croatia (Local Name: Hrvatska)
Curacao
Cyprus
Czech Republic
Democratic Republic of the Congo
Djibouti
Dominica
Dominican Republic
East Timor
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands (Malvinas)
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
French Southern Territories
Gabon
Gambia
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Heard And McDonald Islands
Honduras
Hong Kong
Hungary
Iceland
Indonesia
Iraq
Ireland
Isle of Man
Israel
Italy
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Korea, Republic Of
Kosovo
Kuwait
Kyrgyzstan
Lao People's Democratic Republic
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macau
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Mexico
Micronesia, Federated States Of
Moldova, Republic Of
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Macedonia
Northern Mariana Islands
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russian Federation
Rwanda
Saint Bartholemy
Saint Kitts And Nevis
Saint Lucia
Saint Martin
Saint Vincent And The Grenadines
Samoa
San Marino
Sao Tome And Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
South Africa
South Georgia and the South Sandwich Islands
South Sudan
Sri Lanka
St. Helena
St. Pierre And Miquelon
Suriname
Svalbard And Jan Mayen Islands
Sweden
Switzerland
Taiwan
Tajikistan
Tanzania, United Republic Of
Thailand
Togo
Tokelau
Tonga
Trinidad And Tobago
Tunisia
Turkey
Turkmenistan
Turks And Caicos Islands
Tuvalu
Uganda
Ukraine
United Arab Emirates
United States Minor Outlying Islands
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands (British)
Virgin Islands (U.S.)
Wallis And Futuna Islands
Western Sahara
Yemen
Zambia
Zimbabwe

By providing this information, you agree to the processing of your personal data by SANS as described in our Privacy Policy.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
  • Privacy Policy
  • Terms and Conditions
  • Do Not Sell/Share My Personal Information
  • Contact
  • Careers
© 2025 The Escal Institute of Advanced Technologies, Inc. d/b/a SANS Institute. Our Terms and Conditions detail our trademark and copyright rights. Any unauthorized use is expressly prohibited.
  • Twitter
  • Facebook
  • Youtube
  • LinkedIn