
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Security Features Overview of Merlin (J2SE Version
1.4)
This paper provides an overview of the security feature of JavaTM 2 Standard Edition version 1.4.

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

Security Features Overview of Merlin (J2SE Version 1.4)
Craig Walker
December 1, 2001

Introduction
All the safeguards that we, as security professionals, employ are rendered useless if the
foundation upon which they are laid is not sound. That is why JavaTM has become the
language of choice for the security minded application developer. From its inception,
security was one of the primary tenets of the JavaTM distributed computing platform.
The language implemented several features to enforce secure programming including
range checking on strings and arrays, garbage collection and automatic memory
management. Runtime code legitimacy is insured by the byte code verifier and the
JavaTM Virtual Machine (JVM). The security manager in conjunction with the class
loader enforce strict access policy for code operating on a machine. The JavaTM
‘sandbox’ of JDK 1.0 created a new trust model for distributed and potentially malicious
code. That model has been extended and redefined in subsequent JDK versions.

Building security in is preferred to bolting something on to protect an inherently insecure
application. By providing the tools and infrastructure to easily create secure
applications, Java will help ‘sell’ security as a cost effective and marketable solution. By
making security cheap and easy, it is easier to justify in today’s rapid time to market
software economy. Consider how our jobs would change if we no longer had to worry
about defending against the easily avoidable buffer overflow exploits; one attack
method with so many targets.

JavaTM 2 Standard Edition Security Features
The soon to be released JavaTM 2 Standard Edition version 1.4 takes security to a new
plateau by combining, in the language core, security features to support confidentiality,
integrity, and availability. The following security features renew Sun’s commitment to
secure computing through Java.

• Java Cryptographic Extensions (JCE)
• Java Secure Socket Extensions (JSSE)
• Java Authentication and Authorization Service (JAAS)
• Generic Security Services Application Program Interface (GSS-API)
• Java Certification Path API

Java Cryptographic Extensions (JCE)
The JCE provides an extensible framework for implementing various cryptographic
operations and algorithms. JCE provides functionality to support encryption, key
generation and agreement, and message authentication code (MAC).

The Java Cryptographic Extension provider implementations that ship with J2SE 1.4
include:

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

• Key generation algorithms for DES, Triple DES, Blowfish, MD5, and SHA1
• Symmetric encryption algorithms for DES, Triple DES, and Blowfish
• Diffie-Hellman implementation that includes key agreement algorithm, key

pair generator, and an algorithm parameter generator.
• Hashing algorithms MD5 and SHA1.
• A padding scheme for PKCS#5
• A keystore implementation type named JCEKS

JCE uses the notion of a service provider architecture to create a very open and
flexible cryptographic infrastructure. This architecture which is depicted in
Figure 1, has become the norm for providing independent and extensible services. The
cryptographic services are defined very generically in the service provider interface
(SPI) layer and then implemented as a provider of that service. This all ows for the
simple insertion or removal of cryptographic providers. Clients may configure their
runtimes with different providers (acceptable algorithms for instance) and specify a
preference order. This preference order can be used to help the application select the
strongest supported algorithm. As new algorithms are created, they simply need to be
implemented as a service provider and plugged in to the architecture, having little or no
effect on the applications that are using the service.

Service
Provider

1

Service
Provider

2

Service
Provider

3

 • Cipher
• Key Agreement
• Key Generator
• MAC
• Secret Key Factory
• Exception Mechanism

Application

Program
1

Application

Program
2

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

Figure 1

The Java Secure Sockets Extension
J2SE 1.4 will also include the Java Secure Sockets Extension (JSSE). JSSE provides
implementations and support for Secure Sockets Layer version 3 as well as Transport
Layer Security (TLS) version 1. The inclusion of the SSLSocket and SSLServerSocket
classes provides an easy transition to secure channel programming. As you can see
from the code fragments in Code Sample 1, it is a trivial matter to convert a socket
based application to a secure communication channel.i

// A sample socket program fragment to get a page from port 80
Socket socket = new Socket "www.someNONsecuresite.com", 80);
PrintWriter out = new PrintWriter(
 new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream())));
out.println("GET http://www.someNONsecuresite.com/index.html HTTP/ 1.1"
out.flush();

// The same program fragment over a secure socket
SSLSocketFactory factory = (SSLSocketFactory) SSLSocketFactory.getDefault();
SSLSocket socket = (SSLSocket) factory.createSocket("www.someSECUREsite.com", 443);
PrintWriter out = new PrintWriter(
 new BufferedWriter(
 new OutputStreamWriter(socket.getOutputStream())));
out.println("GET http://www.someSECUREsite.com/index.html HTTP/ 1.1"
out.flush();
Code Sample 1

JSSE additionally provides support utilities for key and certificate management, cipher
negotiation, and client and server authentication. Table 1 outlines the cryptographic
suites along with the cipher strengths supported.

Cryptographic Suite Key Lengths (Bits)

RSA (authentication and key exchange)
2048 (authentication)
2048 (key exchange)
512 (key exchange)

RC4 (bulk encryption) 128
128 (40 effective)

DES (bulk encryption) 64 (56 effective)
64 (40 effective)

Triple DES (bulk encryption) 192 (112 effective)

Diffie-Hellman (key agreement) 1024
512

DSA (authentication) 1024

Table 1
JSSE implements the mechanism for cipher negotiation through the SSL ‘handshake’.
This process involves:

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

1. The client sends its version number, cipher settings, and some session
specific information.

2. The server responds with the same information along with its certificate.
3. The client authenticates the server certificate with the appropriate Certificate

Authority.
4. Using the agreed upon information thus far, the client generates the pre-

master secret key and encrypts it with the server public key. It then sends the
encrypted key back to the server to be used in subsequent transmittals.

5. The server can then optionally validate the client (if it has requested a client
certificate in the previous step).

6. Both the client and the server then generate the session key from the pre-
master secret. This session key will be used to encrypt all further secure
communications during this session.

7. Both systems then exchange an SSL handshake complete message and
begin secure communications.

Java Authentication and Authorization Service (JAAS)

JAAS, as the name implies, is intended to be used for the authentication of users as
well as resource access control (authorization). It is implemented (similar to the JCE
described above) in a modular fashion, isolating applications from the underlying
authentication services.

Authentication involves a user providing some proof that they are indeed who they claim
to be. This proof may take the form of something they have (smartcard or token),
something they know (password), something they are (biometric), or a combination of
these methods. As authentication methods change, it is important to minimize the
impact on dependent application. The modular nature of JAAS provides just such an
independence. Dual (or even triple) mode authentication can also be implemented
easily in JAAS through the notion of stackable authentication modules, similar to the
UNIX Pluggable Authentication Modules (PAM). These modules use a two phase
commit to ensure that either all authentication methods pass or they all fail. In the first
phase (login phase), each module is instructed to do authentication only. The second
phase (commit phase) is only invoked if all modules pass authentication. In the commit
phase all modules are called once again to provide the appropriate credentials for the
subject.

Once identity has been established through authentication, a system needs to
determine whether the principal has the appropriate authority to use the protected
resources. This authorization mechanism is implemented through the Java
SecurityManager when untrusted code requires sensitive system resources. The
security policy for JAAS is consistent with but extends the Java 2 Codesource-based
security model (code signing) by adding principal based authorization. The current and
default implementation uses a local file to define the security policy.

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

Generic Security Services Application Program Interface (GSS-API)
The Java GSS-API is the mechanism for secure message exchange between
applications providing principal authentication, delegation, and message confidentiality
and integrity assurance. The GSS-API is defined in RFC 2853. The two mechanisms
defined in RFC 2853 are the simple public-key GSS-API mechanism and the Kerberos
version 5 GSS-API mechanism.

GSS-API and JSSE contain very similar security functionali ty. There are, however,
several factors that determine the best choice for a given application. If your target
platform includes a Kerberos Version 5 implementation that you want to use for
authentication, GSS-API may be a better choice since JSSE does not support it. If you
are converting a socket based application to a secure socket version, JSSE is probably
the right choice. If, on the other hand, you application communicates via UDP or it
passes both encrypted and non-encrypted messages, GSS-API is probably more
appropriate. GSS-API allows client delegation and impersonation, features not in JSSE.

There are four steps involved in setting up a secure communication with GSS-API. In
the first step, the application acquires a credential that will identify it to another
application. These two applications then develop a shared security context using
GSSContext. This context contains mutual information including cryptographic keys
and message sequence numbers. The third step involves using the methods of
GSSContext to invoke per message services for authentication, integrity, and
confidentiality. The final step ‘cleans up’ any resources that were used during the
communication and releases the context.

Java Certification Path API
The Java Certification Path API provides certificate validation and mapping functions. It
can be used to create, build, and validate certification paths. It uses a similar modular
architecture to the JCE, employing a provider-based architecture. This is an important
API because the entire trust model upon which our e-commerce world is based upon
relies on the effective traversal of a list of certificates until an appropriate authority is
located.

The API includes interfaces and implementations for four certificate functions, Basic,
Validation, Building, and Storage. The basic certification path classes contain the core
functionality for representing and encoding certificate paths. The validation classes, as
the name implies, handle certificate path validation. The building classes are for
creating or automating the discovery of certificate paths. And finally, the storage
classes allow for the storage of certificates and revocation list discovery.

Conclusion
Included in the upcoming release of the J2SE version 1.4, the security provider
architecture creates a desirable independence between system services and
applications. It will also provide application programmers with many of the tools

©
 S

A
N

S
In

st
itu

te
 2

00
1,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2001, As part of the Information Security Reading Room. Author retains full rights.

necessary to implement secure services. We can only hope that this heralds a new era
of secure applications.

References
1. Sun Microsystems Inc., “JavaTM Secure Socket Extensions”

http://java.sun.com/products/jsse/index-14.html (Jun 29, 2001)
2. Sun Microsystems Inc., “JavaTM Cryptography Extension (JCE)”

http://java.sun.com/products/jce/index-14.html (September 11, 2001)
3. Sun Microsystems Inc., “JavaTM Certification Path API Programmer's Guide”

http://java.sun.com/j2se/1.4/docs/guide/security/certpath/CertPathProgGuide.html
(October 22, 2001)

4. The Internet Engineering Task Force (IETF), “Generic Security Service API Version
2 : Java Bindings” http://www.ietf.org/rfc/rfc2853.txt (June, 2000)

5. Sun Microsystems Inc., “When to use Java GSS-API vs. JSSE”
http://java.sun.com/j2se/1.4/docs/guide/security/jgss/tutorials/JGSSvsJSSE.html
(November 30, 2001)

6. Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers, “USER
AUTHENTICATION AND AUTHORIZATION IN THE JAVA(TM) PLATFORM”
http://java.sun.com/security/jaas/doc/acsac.html (December, 1999)

7. Microsoft Corporation, “Description of the Secure Sockets Layer (SSL) Handshake”
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q257591 (April 6, 2000)

i The code is meant to highlight the similarities between socket and secure socket
programs. There are many underlying details that have been excluded for clarity.

Last Updated: June 24th, 2018

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Minneapolis 2018 Minneapolis, MNUS Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Paris June 2018 Paris, FR Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Vancouver 2018 Vancouver, BCCA Jun 25, 2018 - Jun 30, 2018 Live Event

SANS London July 2018 London, GB Jul 02, 2018 - Jul 07, 2018 Live Event

SANS Cyber Defence Singapore 2018 Singapore, SG Jul 09, 2018 - Jul 14, 2018 Live Event

SANS Charlotte 2018 Charlotte, NCUS Jul 09, 2018 - Jul 14, 2018 Live Event

SANSFIRE 2018 Washington, DCUS Jul 14, 2018 - Jul 21, 2018 Live Event

SANS Cyber Defence Bangalore 2018 Bangalore, IN Jul 16, 2018 - Jul 28, 2018 Live Event

SANS Pen Test Berlin 2018 Berlin, DE Jul 23, 2018 - Jul 28, 2018 Live Event

SANS Riyadh July 2018 Riyadh, SA Jul 28, 2018 - Aug 02, 2018 Live Event

SANS Pittsburgh 2018 Pittsburgh, PAUS Jul 30, 2018 - Aug 04, 2018 Live Event

Security Operations Summit & Training 2018 New Orleans, LAUS Jul 30, 2018 - Aug 06, 2018 Live Event

SANS August Sydney 2018 Sydney, AU Aug 06, 2018 - Aug 25, 2018 Live Event

SANS Hyderabad 2018 Hyderabad, IN Aug 06, 2018 - Aug 11, 2018 Live Event

SANS San Antonio 2018 San Antonio, TXUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS Boston Summer 2018 Boston, MAUS Aug 06, 2018 - Aug 11, 2018 Live Event

Security Awareness Summit & Training 2018 Charleston, SCUS Aug 06, 2018 - Aug 15, 2018 Live Event

SANS New York City Summer 2018 New York City, NYUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Northern Virginia- Alexandria 2018 Alexandria, VAUS Aug 13, 2018 - Aug 18, 2018 Live Event

Data Breach Summit & Training 2018 New York City, NYUS Aug 20, 2018 - Aug 27, 2018 Live Event

SANS Virginia Beach 2018 Virginia Beach, VAUS Aug 20, 2018 - Aug 31, 2018 Live Event

SANS Krakow 2018 Krakow, PL Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Prague 2018 Prague, CZ Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Chicago 2018 Chicago, ILUS Aug 20, 2018 - Aug 25, 2018 Live Event

SANS San Francisco Summer 2018 San Francisco, CAUS Aug 26, 2018 - Aug 31, 2018 Live Event

SANS Copenhagen August 2018 Copenhagen, DK Aug 27, 2018 - Sep 01, 2018 Live Event

SANS SEC504 @ Bangalore 2018 Bangalore, IN Aug 27, 2018 - Sep 01, 2018 Live Event

SANS Amsterdam September 2018 Amsterdam, NL Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Tokyo Autumn 2018 Tokyo, JP Sep 03, 2018 - Sep 15, 2018 Live Event

SANS Wellington 2018 Wellington, NZ Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Tampa-Clearwater 2018 Tampa, FLUS Sep 04, 2018 - Sep 09, 2018 Live Event

SANS MGT516 Beta One 2018 Arlington, VAUS Sep 04, 2018 - Sep 08, 2018 Live Event

SANS Cyber Defence Canberra 2018 OnlineAU Jun 25, 2018 - Jul 07, 2018 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=52890
http://www.sans.org/link.php?id=52890
http://www.sans.org/link.php?id=53170
http://www.sans.org/link.php?id=53170
http://www.sans.org/link.php?id=51160
http://www.sans.org/link.php?id=51160
http://www.sans.org/link.php?id=53615
http://www.sans.org/link.php?id=53615
http://www.sans.org/link.php?id=52410
http://www.sans.org/link.php?id=52410
http://www.sans.org/link.php?id=52895
http://www.sans.org/link.php?id=52895
http://www.sans.org/link.php?id=51170
http://www.sans.org/link.php?id=51170
http://www.sans.org/link.php?id=53640
http://www.sans.org/link.php?id=53640
http://www.sans.org/link.php?id=54775
http://www.sans.org/link.php?id=54775
http://www.sans.org/link.php?id=50900
http://www.sans.org/link.php?id=50900
http://www.sans.org/link.php?id=49930
http://www.sans.org/link.php?id=49930
http://www.sans.org/link.php?id=51275
http://www.sans.org/link.php?id=51275
http://www.sans.org/link.php?id=52885
http://www.sans.org/link.php?id=52885
http://www.sans.org/link.php?id=54900
http://www.sans.org/link.php?id=54900
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=1032
http://www.sans.org/link.php?id=1032

