
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

A Tool for Running Snort in Dynamic IP Address
Assignment Environment
The purpose of this paper is to detail the creation of a small tool program which aids the operation of the
Snort IDS in dynamically assigned IP address environment. The configuration file of Snort (snort.conf)
specifies IP numbers for the monitored network and servers. For the non-permanent IP address subscriber sites,
which are the case for the most of ADSL users, these parameters need be updated every time the data link
connection reset and new address is assigned. A set of small programs is written to automate Snor...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

A tool for running Snort in dynamic IP address assignment environment
Shin Ishikawa
February 16, 2002

Introduction
 The purpose of this paper is to detail the creation of a small tool program which aids the
operation of the Snort IDS in dynamically assigned IP address environment. The configuration file
of Snort (snort.conf) specifies IP numbers for the monitored network and servers. For the
non-permanent IP address subscriber sites, which are the case for the most of ADSL users, these
parameters need be updated every time the data link connection reset and new address is assigned.
A set of small programs is written to automate Snort configuration update for the connection using
PPPoE.
 A program monitors the IPCP traffic and dumps PPPoE frames with IPCP negotiations. A script
interprets the IPCP negotiation and sees if new IP addresses are agreed upon. If it is, snort.conf file
is updated with the new IP addresses for HOME_NET and DNS_SERVERS variables and signal is
sent to the running Snort process to restart and reflect the change. This paper examines the
program form the secure code writing point of view and also discusses the meaning of running
Snort IDS in home user environment in the age of "always connected to the Net".

Hardware and Software Environment of sample Home User
 Figure 1 shows the environment for running the Snort IDS. The tool programs run in the same
box the Snort IDS running.

 This home user site is connected to ISP with 1.5Mbps(down) and 512Kbps(up) ADSL. To use
mobile note PC with wireless card, a router with wireless interface is installed. The built in four
port switch of the router make it impossible to monitor all traffic inside LAN. Because of these, the
best monitoring point for the traffic between the site and the Internet is between the router and the
ADSL modem. Normally, straight cable is used to connect the two devices. In our situation, in
order to attach a monitoring PC, a hub is placed. A monitoring PC is running snort-1.8.3 package
port for FreeBSD 4.3-Release. Its NIC(ed0) is not configured to any network layer protocol. It is
used to "sniff" traffic in promiscuous mode.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 The network between the ADSL modem and the router is 10Base-T Ethernet and the PPPoE
protocol is used. Although tcpdump(version 3.5/libpcap version 0.5) interprets ether frames on the
LAN at PPPoE level, the Snort IDS 1.8.3 has no problem in monitoring IP payload within the
PPPoE frames. The router is a low end product for home use, priced around two hundred dollars,
and does not support SNMP or other useful management interfaces. Browser access from inside
LAN is used to setup and monitor the configuration of the router device.

 The tcpdump has been running on the monitoring PC (the blue box in Figure 1) from the

day one of ADSL connection. There are no servers in the site and the router filtering is so
configured that FTP is the only protocol that is allowed to have TCP active open into the
home LAN. The actual traffic is examined from tcpdump header traces to see this is
working as advertised and expected so far.

 Placing Snort IDS was the next step, but the changing IP address posed a problem. If the
router is really a Unix box, by running Snort in it, the detection of assigned IP address
change would have been easier. A posting on the internet "Host attack countermeasures
(Japanese)" mentions a script which periodically examines interface address. Taking the
infrequency of the change of the DNS server addresses from the ISP, that is an acceptable
solution. Some of the dynamic DNS servicers, such as "NO-IP.com", provide DNS entry
update client programs that also use periodical change detection.

 In the above home user's case, the router product is so simple and featureless that
workaround that does not depend on it was necessary.

Overview of the Tool program
 Figure 2 shows the overview of the tool program and its relation to the Snort process. These are
running in the blue box in the Figure 1.

 There are three programs. First one is PPPoE packet sniffer called watchipcp. This process sniffs
the traffic between the ADSL modem and the router using libpcap and writes IPCP packets to a
text file. Second one is an awk script, which reads the file and examines the IPCP negotiation. An
ad hoc IPCP request/confirm matching is used to detect new address negotiation completion. It is
far too much to implement the full IPCP negotiation in a tool like this. Third one is a shell script
that modifies snort.conf file and sends SIGHUP signal to the running Snort process to restart with
the new configuration.

PPPoE traffic sniffer - watchipcp
 This little program is actually a modification of the udpcksum and writepcap example programs

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

found in the Stevens' textbook [1] and accompanying web site [2], respectively. More
novice-friendly tutorial on programming with libpcap [6] is also useful.

 PPPoE and IPCP packet formats

Because we are interested in the IPCP negotiation over PPPoE only, an appropriate filter
will be applied to libpcap. To see how those packets look like tcpdump trace was
observed;

 # tcpdump -n -l -ied0 -ex
 tcpdump: WARNING: ed0: no IPv4 address assigned
 tcpdump: listening on ed0

 and resetting the router, among other lines, following packet trace appeared.

 20:36:36.468102 0:3:32:a9:f0:38 0:40:26:ed:81:63 8864 60: PPPoE [ses 0xbd50] IPCP
 1100 bd50 000c 8021 0101 000a 0306 0a2f
 a043 fc0d e863 2033 4480 ffff ffff ffff
 ffff ffff ffff 0045 5ec0 5010 81d0

 By consulting "PPPoE RFC2516" as well as base PPP RFCs, the above dump can

be interpreted as follows;

 The IPCP payload contains configuration request(offset 22 = 0x01) with one option;
 Option code = 0x03 (IP Address)
 Option length = 0x06 (including two bytes of Option code and Option length)
 Option value = 0x0a2fa043 (four bytes of IP Address(note: value changed!))

From the above observation, following filter definition will be applied to the pcap library
in watchipcp program. 'ether proto 0x8864 && ether[20:2] = 0x8021'

 IPCP Options
 RFC 1332, 1877 and 2290 defines IPCP configuration options[7].
 Option Type Configuration Option
 1 IP Address(deprecated)
 2 IP Compression protocol
 3 IP Address

 4 Mobile IPv4
 129 Primary DNS server IP Address

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 130 Primary NBNS server IP Address
 131 Secondary DNS server IP Address
 132 Secondary NBNS server IP Address
 Because watchipcp program is interested in IP address and DNS address

assignments, option types 3, 129 and 131 will be checked.

 Intermediate file format

IPCP configuration packets' contents will be formatted into text and will be appended to
an intermediate file (watchipcp.out in Figure 2). The interpretation of ongoing
configuration negotiation is left to an outside script suitable for text handling. An entry
for one IPCP packet in the file looks like as follows;

 code 2 ID 03 plen=18
 optCode 3 optLen 6 value 0a2fce93
 optCode 129 optLen 6 value 0a2fa201
 optCode 131 optLen 6 value 0a2fa209
 ++*+
 The last line delimits one packet data.

Although this program is small, simple and lightweight for the intended purpose, the sniffing of
LAN packets is duplicate task with Snort already running in the same box. Writing this function as
a Snort plugin would be more elegant.

IPCP negotiation examiner - a simple comparison awk script

PPP IPCP configuration negotiation is a complicated process. Full implementation of it is too
far beyond the reach of the current project, so, an ad hoc and trivially simple method was sed. For
the same ID, when the requested option is exactly the same as its ack, an agreement is reached.
This is from the observation of PPP negotiation like this:

 After some negotiations, the last two frames with ID=0x03 shows agreement of request made by
Router and Ack from Modem(Server).

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 An awk script (watchipcp.awk) compares configuration request and corresponding ack/nak for
each ID. tail command with -f option continuously reads the output of watchipcp process from the
intermediate file and feeds them to the awk program.

Restarting Snort – a shell script
 When new IP addresses for the Router and DNS servers determined, a shell script is invoked
from inside of the awk program using system(). The script first updates snort.conf file with new
HOME_NET and DNS_SERVERS variable definitions. A sed command does that using a
template configuration file. Then, a SIGHUP signal is sent to the process using kill command.
Snort daemon’s PID is kept in /var/run/snort_ed0.pid file.

Execution
 The tool consists of three processes running background and a restart shell script. Execution
output example is shown in Appendix A1.3.
 (1) watchipcp

This process is invoked from the shell and its standard output is redirected to an
intermediate file.

 watchipcp –ied0 –v >watchipcp.out &

(2) tail command and awk command

Intermediate file is read by tail command and its contents are piped to awk command.
They are invoked from the shell;
 tail –f watchipcp.out | awk –f watchipcp.awk

(3) restart sehll
 Invoked from the awk script with appropriate arguments.
 restart.sh IP PrimaryDNS_IP SecondaryDNS_IP

Performance
 To see the CPU resource consumption, the CPU Time of Snort process and watchipcp process
are compared. After two day’s run, Snort used CPU for 17 minute 46 seconds and watchipcp used
1 minute 21 seconds. This is about 13:1 and the added load was negligible. The monitoring PC is a
48M bytes memory Intel 486DX2. As a home ADSL user with 1.5Mbps downlink, the traffic is so
light that a low spec old machine can monitor it.

Discussion
 In Japan, the number of ADSL user is growing at a remarkable rate. Major ISP and Teleco
provide low price services starting as low as twenty dollars a month. Magazines and media
emphasize the danger of "always connected" Internet environment. How so, is not so clearly
understood by most users, however. Threat of viruses in e-mail attachments and downloaded files
are well recognized and anti-virus software is one of best selling retail packages.
 The possibility of being abused by crackers and becoming one of offenders without knowing is
new. Always powered up PCs directly connected to ADSL modem with no security precaution is
becoming a horrible reality. Home users with several PCs will have to install host based IDS on
each of his PC or set up network based IDS. With either IDS monitoring, it becomes possible to
detect such cases.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Making the operation of Snort IDS easier for home users environment is an attempt to help such
effort less demanding.

 New programs can introduce new risks in the environment in which they run. Programmers need
be aware of the environment in which the product runs. At least clear statement of how much
efforts and consideration regarding security have been put into the program and what assumptions
are made about the environment they run should accompany functional description. Just as every
Internet RFC has Security consideration section, every software needs to have security
assumption description in its specifications and manuals.

 There are ongoing efforts to provide “checklist” for writing secure code, or more practically,
avoiding dangerous pitfalls. The classic on this subject is Grafinkel and Spafford[8]. Among
recent ones are [9] and Open Source community's Internet resources, such as [10]. Microsoft’s
recent emphasis on secure code is expected to mark the major change of tide toward quality
software. The endless patching on program bugs is not a sound state of the industry.

As for the buffer overflow bug, “The best defense is often a good education on the issues”([9]
p137). The book states rules for C programmers, which may be summarized as follows.

Basic rule Always do bound checking.
Corollary Always validate input from user and other programs.
Individual rules

1 Never use gets().
2 Avoid (mis)use of standard library functions(Table 7-1, p 152).
3 Beware of internal buffer size for common functions.
4 Don’t assume anything about the behavior of someone else’s software.

Those rules seem to be demanding too much for ordinary programmers. How hard will it be to
build programs without trusting someone else’s work? The book even states, “The rest is up to
you”. The recognition of the difficulty of writing quality code free from buffer overflow in C or
C++ may be one of the reasons of Java’s wide acceptance. Java also frees programmers from the
burden of the allocation/disposal of memory storage.

Some compilers for C or C++ have the option of producing runtime bound checking code.
Either approach have some performance penalty, though. The quality implementation of the JVM
or compiler must come first. Putting efforts into the infra-structural part of the software
development would be right thing..

 In this spirit, watchipcp program and the tool is examined from the security programming point
of view. The assumption for the tool’s execution environment is, a stand-alone Internet
unreachable machine. So, it should never be used in machines reachable from the Internet or
connected to inside network. The program needs to have root privilege to access network capture
device /dev/bpf. A call to setuid(getuid()) is made at the program startup after establishing access
to the network device. This makes the process run in the non-privileged mode. So, watchipcp
program file is SUID root.([1] p714).

The examination of watchipcp code easily reveals a bug; the bug resides in the portion written

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

by the current author. The original code (udpcksum) from the textbook is considered flawless.
The watchipcp program naively assumes every “sniffed” message is correctly formatted. That is,

the length of option value in the option-length byte field is used without validity checking. This is
violation of the basic rule of "every input needs be validated for boundary checking". The bad
coding is located in check_ipcp() function in watchipcp.c file. See A 1.2 (5) of Appendix.

How dangerous can this be? Even if the NIC is not configured for upper layer network
protocol, programs are not free from the buffer overflow DOS attacks[11]. watchipcp program
examines PPPoE frames, so malformed PPP message can cause the code to crash. It is not easy
to send malformed IPCP frame to the remote site, but it is not impossible; for example, an
attacker may take hold of the PPP server in the ISP’s location.

 The awk script uses system() function, which must be used with care. The argument command
string passed to it is constructed using the input data. By looking at how the formatting of the
command string is done shows that only fixed pattern of output is allowed. The use of system()
here seems safe.

Lessons learned
 The libpcap plays an important role in the network packet monitoring tools. This tutorial showed
its usage in checking the PPPoE frames. By the need to update IP addresses for Snort configuration,
IPCP packets of PPPoE are examined. Actual configuration negotiation sequence was examined
using the tcpdump command.
 The presented program was found to contain a bug that can cause buffer overflow. Writing
secure code, even of this small size, requires much more effort and time.
 Really, a little learning is a dangerous thing.

References
 [1] R. Stevens. UNIX Network Programming, Volume 1, Second Edition: Networking APIs:

Sockets and XTI, Prentice Hall, 1998, pp. 708-725
 [2] W. Richard Stevens' Home Page http://www.kohala.com/start/unpv12e.html
 [3] Snort Home Page http://www.snort.org/
 [4] NO-IP.com Home Page http://www.no-ip.com/
 [5] Host attack countermeasures(Japanese)
 http://www.geocities.co.jp/SiliconValley-Cupertino/5128/500_compu/ids.html
 [6] Packet Capture With libpcap and other Low Level Network Tricks
 http://www.cse.nau.edu/~mc8/Socket/Tutorials/section1.html
 [7] M. Nozaka. Internet Numbers in a Nutshell(Japanese), O'Reilly Japan, 1999, pp 51-60
 [8] S. Grafinkel and G. Spafford. Practical UNIX and Internet Security, 2nd ed ,O'Reilly,1996, pp

701-719
 [9] J. Viega and G McGraw.Building Secure Software, Addison Wesley, 2002
 [10] Secure Programming for Linux and Unix HOWTO
 http://www.dwheeler.com/secure-programs/
 [11] L-122: FreeBSD tcpdump Remote Buffer Overflow Vulnerability
 http://www.ciac.org/ciac/bulletins/l-122.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Appendix

A 1. watchipcp source code

The program was compiled and run on FreeBSD 4.3-Release.
As described in the text, this program is basically a little modification of textbook example. So, for
those 'almost copied' codes, only the modified parts are pointed out here instead of reproducing the
whole source code. watchipcp.c, which implements IPCP packet sniffing using pcap library, is
presented in a whole.
A 1.1 Source code preparation
Download unpv12e.tgz from Reference URL and expand. Top of the expansion directory will be
unpv12e.

(1) Make unpv12e/watchipcp directory.
(2) Copy unpv12e/udpcksum/*.c, unpv12e/udpcksum/*.h and
 unpv12e/udpcksum/Makefile to unpv12e/watchipcp.
(3) Modify/create source files as described in A1.2 below.
(4) make

A 1.2 watchipcp specific codes
(1) Header file
 Rename udpcksum.h to watchipcp.h .
 Add following function prototypes:

void dump_frame(char *, unsigned char *ptr, int len);
void watch_ipcp(void);
void check_ipcp(unsigned char *ptr, int len);

(2)main.c file

Change header file name from "udpcksum.h" to "watchipcp.h".
In main() function,

 Remove argc<2 test.
 Remove cases for 'l' and '0' in getopt() select loop.
 Remove lines from
 if (optind != argc-2)
 to
 Setsockopt(rawfd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on));
 Change "test_udp()" to "watch_ipcp()" .
 Change usage() description as appropriate.

(3)pcap.c file

Change header file name from "udpcksum.h" to "watchipcp.h".
In open_pcap() function,

No need to construct filter string.
Instead, define constant CMD and pass it to the third parameter of pcap_compile();

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 #define CMD "ether proto 0x8864 && ether[20:2] = 0x8021"
 :
 if (pcap_compile(pd, &fcode, CMD, 0, netmask) < 0)

Remove lines from pcap_lookupnet() to one line above pcap_compile() .
Set promiscuous flag parameter =1 in pcap_open_live()

 /* hardcode: promisc=1, to_ms=500 */
 if ((pd = pcap_open_live(device, snaplen, 1, 500, errbuf)) == NULL)
 :

(4) cleanup.c

Change header file name from "udpcksum.h" to "watchipcp.h".

(5) Create watchipcp.c file
 Add the following lines to watchipcp.c file.

#include "watchipcp.h"

void
watch_ipcp(void)
{
 int len;
 unsigned char *ptr;

 for (; ;) {
 ptr = next_pcap(&len);
 if(verbose) dump_frame("111", ptr, len);
 check_ipcp(ptr, len);
 }
}

void check_ipcp(unsigned char *ptr, int len) {

 struct ether_header *eptr;
 int plen;
 int pos;
 int optLen;
 int i;

 eptr = (struct ether_header *) ptr;
 if (ntohs(eptr->ether_type) != 0x8864)
 err_quit("Ethernet type %x not PPPoE", ntohs(eptr->ether_type));

 /* skip ether header = start of ppp header */
 ptr = ptr + 14;
 len = len - 14;
 /* if(verbose) dump_frame("222", ptr, len); */

 /* examine ppp header fields */
 if (ptr[6]==0x80 && ptr[7]==0x21) { /* this is IPCP frame */
 ptr = ptr + 8;

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

 printf("code %d ", ptr[0]);
 printf("ID %02x ", ptr[1]);
 plen = ptr[2]*16 + ptr[3] -4;
 printf("plen=%d\n", plen);
 ptr = ptr + 4;
 pos = 0;
 while(pos < plen) {
 optLen = ptr[pos+1];
 printf("optCode %d optLen %d value ", ptr[pos], optLen);
 for(i=pos+2; i<pos+optLen; i++) printf("%02x", ptr[i]);
 printf(" \n");
 pos += optLen;
 }
 printf("*+*+*+\n");
 fflush(stdout);
 }
}

void
dump_frame(char *str, unsigned char *ptr, int len) {
 int i;

 fprintf(stderr, "%s ---------------------- %d\n", str, len);
 for(i=0; i<len; i++) fprintf(stderr, "%02x", ptr[i]);
 fprintf(stderr, "\n----------------------\n");
}

(6) Makefile
 Change the following lines. Note that libpcap.a is in /usr/lib in FreeBSD 4.3.

 OBJS = main.o pcap.o watchipcp.o cleanup.o
 PROGS = watchipcp
 watchipcp: ${OBJS}
 ${CC} ${CFLAGS} -o $@ ${OBJS} /usr/lib/libpcap.a ${LIB}

A 1.3 Example run of watchipcp

./watchipcp -ied0 -v
device = ed0
datalink = 1
111 ---------------------- 60
004f17f39252000332a9f03888641100e251000c80210101000a03060a2fa0434f55b0f420334480ffffffffffffffff07be2e
308b9e19c750104246

code 1 ID 01 plen=6
optCode 3 optLen 6 value 0a2fa043
++*+
 :
 :
 :
111 ---------------------- 60
000332a9f038004f17f3925288641100e251001880210103001603060a2fd34081060a2fa20183060a2fa20900000000
000000000000000000000000

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

code 1 ID 03 plen=18
optCode 3 optLen 6 value 0a2fd340
optCode 129 optLen 6 value 0a2fa201
optCode 131 optLen 6 value 0a2fa209
++*+
111 ---------------------- 60
004f17f39252000332a9f03888641100e251001880210203001603060a2fd34081060a2fa20183060a2fa2091a1319d7
20335080ffffffffffffffff

code 2 ID 03 plen=18
optCode 3 optLen 6 value 0a2fd340
optCode 129 optLen 6 value 0a2fa201
optCode 131 optLen 6 value 0a2fa209
++*+
^C

27 packets received by filter
0 packets dropped by kernel

A 2. Awk script

watchipcp.awk

BEGIN {
 dec["0"]=0; dec["1"]=1; dec["2"]=2; dec["3"]=3; dec["4"]=4; dec["5"]=5; dec["6"]=6; dec["7"]=7;
 dec["8"]=8; dec["9"]=9; dec["a"]=10; dec["b"]=11; dec["c"]=12; dec["d"]=13; dec["e"]=14; dec["f"]=15;

 optCode[3]="IPADDR"; optCode[129]="DNSPRI"; optCode[131]="DNS2ND";

 currentID = 0
 confReq = ""
}
{
 if($1 != "code") next
 if(currentID != $4) {
 currentID = $4
 confReq = ""
 if($2 != 1) next
 # new configuration request
 confReq = saveConf()
 } else { # same ID
 if ($2 == 1) {
 confReq = saveConf()
 } else if($2 == 2) {
 ackReq = saveConf()

 if(confReq == ackReq) {
 print "New session has started with configuration=" confReq
 resetConf()
 }
 }
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

function saveConf() {
 conf = ""
 while(1) {
 getl ine
 if($1 == "*+*+*+") break
 conf = conf " " $0
 }
 print currentID, conf
 return conf
}

function resetConf() {
 n = split(confReq, F)
 if (n!= 18) panic()
 optValue[F[2]] = F[6]
 optValue[F[8]] = F[12]
 optValue[F[14]] = F[18]
 for(i in optValue) {
 print i, optCode[i], dotdecimal(optValue[i])
 }
 cmd = "/usr/local/share/snort/restart.sh " dotdecimal(optValue[3]) " " dotdecimal(optValue[129]) " "
dotdecimal(optValue[131])
 print cmd
 system(cmd)
}
function dotdecimal(hex) {
 val = ""
 for(j=0; j<4; j++) {
 val = val "." dec[substr(hex,j*2+1,1)]*16 + dec[substr(hex,j*2+2,1)]
 }
 return substr(val,2)
}

function panic() {
 print "unexpected situation!"
 exit(1)
}

A 3. Shell script

cat restart.sh
(cd /usr/local/share/snort; sed "s/IPADDR/$1/g" snort.conf.tmp | sed "s/DNSPRI/$2/g" | sed "s/DNS2ND/$3/g"
>snort.conf; kill -HUP `cat /var/run/snort_ed0.pid`)

Here, snort.conf.tmp is a template file including three lines as shown below;

grep ^var snort.conf.tmp
var HOME_NET IPADDR/32
var EXTERNAL_NET any
var DNS_SERVERS [DNSPRI,DNS2ND]

Last Updated: July 24th, 2017

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS San Antonio 2017 San Antonio, TXUS Aug 06, 2017 - Aug 11, 2017 Live Event

SANS Boston 2017 Boston, MAUS Aug 07, 2017 - Aug 12, 2017 Live Event

SANS Hyderabad 2017 Hyderabad, IN Aug 07, 2017 - Aug 12, 2017 Live Event

SANS Prague 2017 Prague, CZ Aug 07, 2017 - Aug 12, 2017 Live Event

SANS New York City 2017 New York City, NYUS Aug 14, 2017 - Aug 19, 2017 Live Event

SANS Salt Lake City 2017 Salt Lake City, UTUS Aug 14, 2017 - Aug 19, 2017 Live Event

SANS Chicago 2017 Chicago, ILUS Aug 21, 2017 - Aug 26, 2017 Live Event

SANS Adelaide 2017 Adelaide, AU Aug 21, 2017 - Aug 26, 2017 Live Event

SANS Virginia Beach 2017 Virginia Beach, VAUS Aug 21, 2017 - Sep 01, 2017 Live Event

SANS San Francisco Fall 2017 San Francisco, CAUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS Tampa - Clearwater 2017 Clearwater, FLUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS Network Security 2017 Las Vegas, NVUS Sep 10, 2017 - Sep 17, 2017 Live Event

SANS Dublin 2017 Dublin, IE Sep 11, 2017 - Sep 16, 2017 Live Event

SANS Baltimore Fall 2017 Baltimore, MDUS Sep 25, 2017 - Sep 30, 2017 Live Event

Data Breach Summit & Training Chicago, ILUS Sep 25, 2017 - Oct 02, 2017 Live Event

SANS London September 2017 London, GB Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Copenhagen 2017 Copenhagen, DK Sep 25, 2017 - Sep 30, 2017 Live Event

SANS SEC504 at Cyber Security Week 2017 The Hague, NL Sep 25, 2017 - Sep 30, 2017 Live Event

Rocky Mountain Fall 2017 Denver, COUS Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Oslo Autumn 2017 Oslo, NO Oct 02, 2017 - Oct 07, 2017 Live Event

SANS DFIR Prague 2017 Prague, CZ Oct 02, 2017 - Oct 08, 2017 Live Event

SANS Phoenix-Mesa 2017 Mesa, AZUS Oct 09, 2017 - Oct 14, 2017 Live Event

SANS October Singapore 2017 Singapore, SG Oct 09, 2017 - Oct 28, 2017 Live Event

SANS AUD507 (GSNA) @ Canberra 2017 Canberra, AU Oct 09, 2017 - Oct 14, 2017 Live Event

Secure DevOps Summit & Training Denver, COUS Oct 10, 2017 - Oct 17, 2017 Live Event

SANS Tysons Corner Fall 2017 McLean, VAUS Oct 14, 2017 - Oct 21, 2017 Live Event

SANS Tokyo Autumn 2017 Tokyo, JP Oct 16, 2017 - Oct 28, 2017 Live Event

SANS Brussels Autumn 2017 Brussels, BE Oct 16, 2017 - Oct 21, 2017 Live Event

SANS Berlin 2017 Berlin, DE Oct 23, 2017 - Oct 28, 2017 Live Event

Security Awareness Summit & Training 2017 OnlineTNUS Jul 31, 2017 - Aug 09, 2017 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=46355
http://www.sans.org/san-antonio-2017
http://www.sans.org/link.php?id=46360
http://www.sans.org/boston-2017
http://www.sans.org/link.php?id=49062
http://www.sans.org/hyderabad-2017
http://www.sans.org/link.php?id=46495
http://www.sans.org/prague-2017
http://www.sans.org/link.php?id=46260
http://www.sans.org/new-york-city-2017
http://www.sans.org/link.php?id=47042
http://www.sans.org/Salt-Lake-City-2017
http://www.sans.org/link.php?id=46245
http://www.sans.org/chicago-2017
http://www.sans.org/link.php?id=46160
http://www.sans.org/adelaide-2017
http://www.sans.org/link.php?id=46385
http://www.sans.org/virginia-beach-2017
http://www.sans.org/link.php?id=47047
http://www.sans.org/san-francisco-fall-2017
http://www.sans.org/link.php?id=46465
http://www.sans.org/tampa-clearwater-2017
http://www.sans.org/link.php?id=47052
http://www.sans.org/network-security-2017
http://www.sans.org/link.php?id=49177
http://www.sans.org/sans-dublin-2017
http://www.sans.org/link.php?id=46887
http://www.sans.org/baltimore-fall-2017
http://www.sans.org/link.php?id=48222
http://www.sans.org/data-breach-summit-2017
http://www.sans.org/link.php?id=46530
http://www.sans.org/london-september-2017
http://www.sans.org/link.php?id=46500
http://www.sans.org/copenhagen-2017
http://www.sans.org/link.php?id=49677
http://www.sans.org/sec504-cyber-security-week-2017
http://www.sans.org/link.php?id=48217
http://www.sans.org/rocky-mountain-fall-2017
http://www.sans.org/link.php?id=49642
http://www.sans.org/olso-autumn-2017
http://www.sans.org/link.php?id=46550
http://www.sans.org/dfir-prague-2017
http://www.sans.org/link.php?id=48967
http://www.sans.org/phoenix-mesa-2017
http://www.sans.org/link.php?id=46155
http://www.sans.org/october-singapore-2017
http://www.sans.org/link.php?id=50375
http://www.sans.org/aud507-canberra-2017
http://www.sans.org/link.php?id=48227
http://www.sans.org/secure-devops-summit-2017
http://www.sans.org/link.php?id=46470
http://www.sans.org/tysons-corner-2017
http://www.sans.org/link.php?id=47432
http://www.sans.org/tokyo-autumn-2017
http://www.sans.org/link.php?id=46545
http://www.sans.org/brussels-autumn-2017
http://www.sans.org/link.php?id=46535
http://www.sans.org/berlin-2017
http://www.sans.org/link.php?id=47107
http://www.sans.org/security-awareness-summit-2017
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

