
SEC642

JWT Security Issues

Copyright 2021 Adrien de Beaupré |  All Rights Reserved

Advanced Web Application Penetration Testing, Ethical 
Hacking, and Exploitation Techniques

S



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  2

Adrien de Beaupré

SANS Instructor and course author

adriendb@gmail.com

intru-shun.ca

@adriendb

1 613 797 3912

GWAPT, GXPN, GPEN, 

GCIH, GCIA, GSEC, 

CISSP, OPST, OPSA…

About Me



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  3

What are JWT

JSON Web Tokens (JWT) are actually JSON Web Signature (JWS)

RFC 7515 (2015) among others. Stateless most often

Are BASE64URL encoded, can be encrypted as JWE but often not

Three parties; Client, Authorization Server, and Resource Server

Used for validation of authentication, assert claims, authorization 

JWT are often used in API calls after authentication

Have three parts; header, payload of claims, digital signature

A number of supported signature algorithms

Can be in local storage, in headers, or in a cookie. 

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  4

JWT Parts

JOSE Header: {"typ":"JWT","alg":"RS256"} (in JSON)

JWS Payload: Seven registered claims, can add custom claims

Commonly used claims: iat, iss, exp, and others. Could be sessionid

JWS Signature: provides an integrity check, tamper detection

Commonly used algorithms: HS256, RS256, ES256, and none 

The three parts are individually BASE64URL encoded and 
concatenated together with dots Header.Payload.Signature

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VyX2lkIjoyL
CJleHAiOjE2MDI2OTc4MzR9.vqY5OE1oMPF6MlN98vDk0osrtTWWTF
y68O1zf1oxcvw

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  5

Creating JWT in Python

Create variables for the HMAC key, the header, the claims payload, 
and the signature

Base64URL encode them each

Concatenate them together with dots '.' between them

The Python code is below (note the vulnerability)

JWT

#!/usr/bin/env python3
import jwt
mykey = bytes("s3kret", "utf-8"); mypayload = {"user_id": 1}
signedjwt = jwt.encode(mypayload, mykey, algorithm='HS256')
mydecode = jwt.decode(signedjwt, mykey)



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  6

JWT Security Issues

Base64 is a reversible function, effectively in the clear

XSS can access local storage, not easily revoked

Not validating the signature at all, or not if absent

Reuse of a JWT with a different resource server than intended

Changing values with the none algorithm

Cracking the HS256 key and reusing it to change claims

Algorithm substitution, swapping RS256 to HS256

Stealing the HS256 secret or RS256 private key via other attack

Key ID "kid", JWK Set URL "jku", X.509 "x5u", and "x5c" issues

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  7

Identifying the Algorithm 

If the server is signing the JTW as it has three parts

By decoding the header part we can see the algorithm

We can do this in Python, use Burp Decoder, or at the command 
line with base64 -d

JWT

#!/usr/bin/env python3
import base64

myalgo = base64.urlsafe_b64decode('theJWTheader')
print(myalgo)



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  8

The None Algorithm

The server does not sign the JWT, or allows the None algorithm 
when decoding and validating the JWT

This is obvious as it has only two parts

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJ1c2VyX2lkIjoxLCJle
HAiOjE2MDI2MTA4OTJ9.

We can decode the JWT, change the payload, encode it

Then submit the request with the new JWT

We are now some other user, can make other claims

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  9

Cracking HS256 Secret 

There are a number of tools that can crack the JWT HS256 secret

john the ripper can use brute force, password list, or hybrid

jwtcrack uses a brute force attack where you specify the alphabet 
and maximum length

hashcat uses the mode of 16500 for JWT and can use a password 
list for a dictionary attack 

For john and hashcat put your JWT into a file

JWT

$./john myjwtfile --format=HMAC-SHA256
$ jwtcrack 'theJWTvalue' 'alphabet' 8
$./hashcat -m 16500 myjwtfile password.lst --force



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  10

Algorithm Substitution

If we know both the signing algorithm used and the RS256 public 
key we can forge a JWT to become other users

We can change the first part to an algorithm of HS256

The claim values are changed and encoded in the second part

Last sign the concatenated first two parts correctly with the secret

Or use Python to create a new JWT with the public key 

JWT

mykey = bytes('''RS256PublicKey''', 'utf-8')
newpayload = {'user_id': 1}
encoded = jwt.encode(newpayload, mykey, algorithm='HS256')
print(encoded)



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  11

Signature Exclusion Attacks

The Burp extension called 
JOSEPH (JSON Web Token 
Attacker in Burp Store) can 
perform what it calls a Signature 
Exclusion attack

It changes the header to none, 
strips off the signature, and 
submits using different case for 
the word none

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  12

None Algorithm With Intruder JWT

2

3

4

6

5

1



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  13

None Algorithm With Intruder Continued JWT

8-12

Success

7

13



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  14

JOSEPH Signature Exclusion

Select a highlighted request in 
the Burp HTTP History and 
Send to JOSEPH

On the Attacker tab select 
Signature Exclusion

Click on Load

Then click on Attack

The Attacker window will open 
up, similar to Intruder

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  15

Examining Signature Exclusion Attacks

Looking at each of the responses 
in the JOSEPH we see success

It automates the process of 
switching the algorithm to none 
and stripping off the signature 
part of the JWT

Request zero is a baseline

Note that it tries four case 
switching techniques

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  16

JOSEPH Key Confusion

Selecting a highlighted request 
in the Burp HTTP History we 
can send to JOSEPH

On the Attacker tab select 
Key Confusion

Click on Load

Paste the public key

Then click on Attack

The Attacker window will open 
up, similar to Intruder

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  17

Key Confusion Attacks

JOSEPH calls the Algorithm 
Substitution attack Key 
Confusion

It automates the process of 
switching the algorithm to 
HMAC + SHA and signing with 
the RS256 public key

Request zero is a baseline

Note that it tries many different 
HMAC + SHA algorithms and 
not only HS256

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  18

Conclusion

JWT are used to assert claims

Often used in APIs such as SOAP, REST, and GraphQL

Three parts encoded: Header . Claims . Signature

Three parties: Client, Authorization Server, and Resource Server(s)

Security issues: Other injection attacks via claims values, failure to 
validate the signature, information disclosure, the none algorithm, 
cracking the HS256 secret, signature exclusion, algorithm 
substitution between RS256 and HS256 using the public key, 
stealing the server private key, vulnerable libraries, implementation 
choices, difficult to cancel, and reuse of JWT against other 
resources.  

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  19

References

https://tools.ietf.org/html/rfc7515 & 7516 - 7520

https://jwt.io/introduction/

https://dev.to/apcelent/json-web-token-tutorial-with-example-in-
python-23kb

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-
libraries/

https://trustfoundry.net/jwt-hacking-101/

https://medium.com/swlh/hacking-json-web-tokens-jwts-
9122efe91e4a

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  20

References

https://r2c.dev/blog/2020/hardcoded-secrets-unverified-tokens-
and-other-common-jwt-mistakes/

https://authlab.digi.ninja

https://github.com/bkimminich/juice-shop

https://www.sans.org/webcast/recording/citrix/115425/230355 
(requires a SANS account)

https://www.youtube.com/watch?v=muYmiEtPL8U

JWT



SEC642 | Advanced Web Application Penetration Testing, Ethical Hacking, and Exploitation Techniques  21

Course Resources and Contact Information JWT

AUTHOR CONTACT

Adrien de Beaupré

adriendb@gmail.com

@adriendb

SANS INSTITUTE

11200 Rockville Pike, Suite 200

North Bethesda, MD 20852

301.654.SANS(7267)

SANS EMAIL

GENERAL INQUIRIES: 

info@sans.org

REGISTRATION: 

registration@sans.org

TUITION: tuition@sans.org

PRESS/PR: press@sans.org

PEN TESTING RESOURCES

pen-testing.sans.org

Twitter: @SANSPenTest

mailto:adriendb@gmail.com
mailto:info@sans.org
mailto:registration@sans.org
mailto:tuition@sans.org
mailto:press@sans.org

