
Meltdown and Spectre - understanding

and mitigating the threats

Jake Williams

@MalwareJake

SANS / Rendition Infosec

sans.org / rsec.us

@RenditionSec

Gratuitous vulnerability logos

Before we start, it’s important to understand that

while this is bad, the sky isn’t falling

Media reports will likely seek to sensationalize these

vulnerabilities

There are actions you can take to minimize exposure,

particularly for critical workloads

The sky isn’t falling!

(C) 2018 Rendition Infosec - Jake Williams

What is Meltdown?

What is Spectre?

Exploitation scenarios

How are these vulnerabilities alike (and different)

Exploit mitigations (there’s more to this than “patch”)

Closing thoughts

Agenda

(C) 2018 Rendition Infosec - Jake Williams

Meltdown

The coolest thing to happen to processor
geeks since… forever.

Meltdown allows attackers to read arbitrary physical

memory (including kernel memory) from an

unprivileged user process

Meltdown uses out of order instruction execution to

leak data via a processor covert channel (cache lines)

Meltdown was patched (in Linux) with KAISER/KPTI

Meltdown – the basics

(C) 2018 Rendition Infosec - Jake Williams

Linux implements kernel ASLR by default since 4.12

The 64-bit address space is huge, you wouldn’t want

to dump the whole thing

– 16EB theoretical limit, but 256TB practical limit

Randomization is limited to 40 bits, meaning that

locating kernel offsets is relatively easy

Kernel ASLR (Address Space Layout Randomization)

(C) 2018 Rendition Infosec - Jake Williams

Windows ASLR isn’t much different in that not all of the

kernel is randomized

Because of the way the Windows memory manager is

implemented, it is unlikely that the entirety of physical

memory is mapped into a single process

Verdict: On an unpatched Windows system, most (but not

all) kernel memory can be read from Windows

Kernel ASLR (Address Space Layout Randomization)

(C) 2018 Rendition Infosec - Jake Williams

Page tables contain the mappings between virtual

memory (used by the process) and physical memory

(used by the memory manager)

For performance reasons, most modern OS’s map

kernel addresses into user space processes

– Under normal circumstances, the kernel memory can’t

be read from user space, an exception is triggered

Page Tables (User and Kernel)

(C) 2018 Rendition Infosec - Jake Williams

Meltdown attack

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Secret data

Step 1: A user process reads a byte of
arbitrary kernel memory. This should cause an
exception (and eventually will), but will leak
data to a side channel before the exception
handler is invoked due to out of order
instruction execution.

CPU Cache

Clear the elements of
the user space array
from the CPU cache.

User space array

Meltdown attack (2)

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Secret data

Step 2: The value of the secret data is used to
populate data in an array that is readable in
user space memory. The position of the array
access depends on the secret value.

User space array

CPU Cache

Array offset “secret”Due to out of order instruction
processing, this user space array
briefly contains the secret (by
design), but the operation is
flushed before it can be read.

Meltdown attack (3)

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Secret data

Step 3: An exception is triggered that discards
the out of order instructions. The secret
cannot be read from the user space array

User space array

CPU Cache

Array offset “secret”Secret data is never available in
the user accessible array since
the exception discards the
results of the out of order
instruction computations.

Meltdown attack (4)

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Secret data

Step 5: The unprivileged process iterates
through array elements. The cached element
will be returned much faster, revealing the
contents of the secret byte read.
* The array is really 4KB elements

User space array

CPU Cache

Array offset “secret”

for (x=0; x <=255; x++) {
return min(time(read array[x]))

}

0x0 – slow
0x1 – slow
0x2 – slow
…
0x31 – fast! (cache hit)

Kernel page table isolation (aka KPTI, aka the KAISER

patch) removes the mapping of kernel memory in user

space processes

Because the kernel memory is no longer mapped, it

cannot be read by Meltdown

–This incurs a non-negligible performance impact

Kernel Page Table Isolation

(C) 2018 Rendition Infosec - Jake Williams

Technically, some kernel memory (e.g. interrupt

handlers) must be mapped into user space processes

Future research will involve determining if leaking

these small remnants of kernel memory can be used

to dump other offsets in kernel memory

The patch does not address the core vulnerability, it

simply prevents practical exploitation

Kernel Page Table Isolation (2)

(C) 2018 Rendition Infosec - Jake Williams

Modern intel CPUs implement TSX, allowing for

hardware transactional memory operations

e.g. Grouping instructions for “all or nothing” execution

This allows the Meltdown attack to be performed

without software exception handling routines

Why was there a rumor this was Intel only?

(C) 2018 Rendition Infosec - Jake Williams

Meltdown exploitation is theoretically possible on

both ARM and AMD, but the authors note that no

practical exploitation was achieved

They note that this may be due to the need for

optimization of their code – experiments confirm out

of order execution is definitely occurring

Are ARM and AMD processors impacted?

(C) 2018 Rendition Infosec - Jake Williams

Spectre

Forget what I said about Meltdown, this might
be cooler…

Spectre abuses branch prediction and speculative

execution to leak data from via a processor covert

channel (cache lines)

Spectre can only read memory from the current

process, not the kernel and other physical memory

Spectre does not appear to be patched

Spectre – the basics

(C) 2018 Rendition Infosec - Jake Williams

Modern processors perform speculative execution

They execute instructions in parallel that are likely to

be executed after a branch in code (e.g. if/else)

Of course these instructions may never really be

executed, so a sort of CPU snapshot is taken at the

branch so execution can be “rolled back” if needed

Speculative Execution

(C) 2018 Rendition Infosec - Jake Williams

How does the CPU know which side of a branch

(“if/else”) to speculatively execute?

Branch prediction algorithms are trained based on

current execution

The CPU “learns” which branch will be executed from

previous executions of the same code

Branch Prediction

(C) 2018 Rendition Infosec - Jake Williams

Spectre attack

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Kernel secret data

The Spectre vuln does not allow an
unprivileged process to read privileged
memory (as we saw with Meltdown).

Spectre does allow code executing in the
victim process to access data it should not
have access to (e.g. outside of a JavaScript
sandbox).

Attacker controlled code

X

User secret data

Spectre attack (2)

(C) 2018 Rendition Infosec - Jake Williams

User memory

Kernel memory

Unprivileged Process
Virtual memory

Kernel secret data

Spectre is most likely to be exploited in
applications that allow users to run some
code in a sandbox. Spectre will allow the
attacker to escape the sandbox and leak data
from elsewhere in the process.

This is most useful in a browser where one tab
may contain attacker code while another tab
contains sensitive information that should not
be accessible to the attacker.

Isolating each tab in its own process would
mitigate this type of attack.

Attacker controlled code

X

User secret data

Exploit Scenarios

How are attackers most likely to use Spectre
and Meltdown?

At this time we believe there are two primary uses for

Meltdown:

1. Privilege Escalation

2. Container/Paravirtualization Hypervisor Escape

Meltdown attacks

(C) 2018 Rendition Infosec - Jake Williams

On any unpatched system if an attacker can execute a

process they can dump all (or most) physical memory

With physical memory, attackers could identify

password hashes, execute a mimikatz style attack on

Windows, or find private keys

Sure, KASLR is also bypassed (but who really cares)

Meltdown - Privilege Escalation

(C) 2018 Rendition Infosec - Jake Williams

Meltdown may target kernel addresses that are shared

between the container and host kernel in many

paravirtualization instances (e.g. Xen) and kernel

sandboxes (e.g. Docker)

It is possible that attacker may leak data from the

outside the container, leading to a hypervisor escape

Meltdown – Container Escape

(C) 2018 Rendition Infosec - Jake Williams

The primary exploit scenario we see for Spectre is

JavaScript execution in the browser being used to

read outside of the browser sandbox

There are two probable uses for this:

1. Leaking secret data from browser memory outside the

JavaScript sandbox

2. Leaking addresses of user space modules to bypass

ASLR (facilitating remote code execution)

Spectre – Exploit Scenarios

(C) 2018 Rendition Infosec - Jake Williams

The web browser contains all sorts of interesting stuff

you probably don’t want other sites to be able to read

Using JavaScript (perhaps in an advertisement),

Spectre attacks could be used to leak browser cache

or other saved data that pertains to other sites

– I’m particularly worried about session keys for active

session (this completely bypasses MFA)

Spectre – Leaking Browser Memory

(C) 2018 Rendition Infosec - Jake Williams

A large number of browser vulnerabilities are not

practically exploitable because of user space ASLR

–ASLR and DEP have substantially limited browser

exploitation

Spectre can be used to determine the address of a

module in memory and bypass ASLR (ushering in the

new age of practical browser exploitation)

Spectre – Leaking Module Addresses

(C) 2018 Rendition Infosec - Jake Williams

Meltdown vs Spectre

Cage match!

Two vulnerabilities enter,

All your data leaves… 

Meltdown Spectre

Allows kernel memory read Yes No

Was patched with KAISER/KPTI Yes No

Leaks arbitrary user memory Yes Yes

Could be executed remotely Sometimes Definitely

Most likely to impact Kernel integrity Browser memory

Practical attacks against Intel Intel, AMD, ARM

Meltdown vs. Spectre

(C) 2018 Rendition Infosec - Jake Williams

Spectre and Meltdown Mitigations

This is more than (just) patching…

In Linux, KPTI has an obvious performance

impact

–Testing suggests less than 10%

Patching on Windows may not actually patch

if you’re running third party antivirus products

–Sadly, this isn’t a joke…

Patch – but patch carefully

(C) 2018 Rendition Infosec - Jake Williams

Kevin Beaumont (@GossiTheDog) has compiled a list

of antivirus patch statuses

–http://bit.ly/MeltdownPatchCompat

Symantec is known to cause a BSOD

–Patch to the AV engine is expected tomorrow

Reports are that applying patches may BSOD

(C) 2018 Rendition Infosec - Jake Williams

http://bit.ly/MeltdownPatchCompat

Many orgs are running legacy systems that can’t be

patched (e.g. Win2k3)

For these systems, consider whether it is prudent to

allow multi-user access if critical workloads are being

maintained there

Consider systems that won’t be patched

(C) 2018 Rendition Infosec - Jake Williams

Most (all?) major cloud hosting providers patched

before the vulnerability was publicly known

– If you’re on AWS, Azure, etc. you should be good

Semi-private/smaller cloud providers are what scare

me – they didn’t get the embargo information like

the big guys did

What about cloud?

(C) 2018 Rendition Infosec - Jake Williams

On Chrome, you can enable site isolation – I can’t

think of a good reason not to do this

–http://bit.ly/ChromeSiteIsolation

–Thanks for @HackerFantastic for this recommendation

This causes Chrome to load each site into its own

process so even if same-origin policy is bypassed you

can’t steal data from another site

–This isn’t 100% safe, cache data is probably still in

memory

Browser memory isolation

(C) 2018 Rendition Infosec - Jake Williams

http://bit.ly/ChromeSiteIsolation

Expect to see variations on these attacks for some

time to come

Multiple different researchers independently found

these vulns while they were under embargo

Architect your networks expecting more vulns of

this type to be discovered

This probably won’t be the last hardware bug

(C) 2018 Rendition Infosec - Jake Williams

Closing thoughts

A few thoughts as we close out the webcast

Attacks that impact microarchitecture of CPUs have

been known for more than a decade

Most were thought to be only exploitable in very

limited cases, many involving physical access

Spectre and Meltdown attacks make it clear that CPU

architecture decisions need to be rethought

Closing thoughts

(C) 2018 Rendition Infosec - Jake Williams

In the long term, you should expect to see more

attacks on CPU microarchitecture

This particularly will impact multi-tenant environments

Spectre and Meltdown offer true wakeup calls for

those running critical workloads in shared

environments (e.g. the cloud)

Closing thoughts (2)

(C) 2018 Rendition Infosec - Jake Williams

Meltdown Spectre

Allows kernel memory read Yes No

Was patched with KAISER/KPTI Yes No

Leaks arbitrary user memory Yes Yes

Could be executed remotely Sometimes Definitely

Most likely to impact Kernel integrity Browser memory

Practical attacks against Intel Intel, AMD, ARM

The End - Meltdown vs. Spectre

(C) 2018 Rendition Infosec - Jake Williams

Thanks for attending! Please let us know if this webcast

helped you get a handle on these vulnerabilities.

