How to Perform a Security Investigation in AWS A SANS Whitepaper

Kyle Dickinson
Introduction

With the rapid growth of cloud service providers and the appeal, for organizations, of no longer having to manage their own data centers, more organizations are migrating to infrastructure-as-a-service (IaaS) providers. And the ability to stand up global infrastructure in a few clicks, or through a Continuous Integration and Continuous Deployment (CI/CD) pipeline, is drawing developers to cloud services as well.

What does this mean for incident response and forensics teams? We advocate for putting cloud-specific plans into place, because the technologies that enable investigations in the cloud differ from the ones for on premises, as do the levels of responsibility.

In this paper, we cover incident response plans in IaaS implementations, various services available that aid in conducting an investigation and the different components of an audit log. We also explore how to perform a forensic image analysis and how to review the communications that are coming to and from an EC2 instance.

Investigations vs. Incident Response

Investigations (or forensics), by definition is “...the process of using scientific knowledge for collecting, analyzing, and presenting evidence. ...”1 Although investigations do not have to be aimed at providing evidence for a court case, understanding the process is important.

How Investigations Differ in Cloud-Based Environments

When performing an investigation in Amazon Web Services (AWS), it’s essential to understand that the investigation “playbook,” or process, that an organization has for on-premises investigations is not exactly the same as for cloud-based investigations. Table 1 shows the differences between on-premises and cloud-based investigations.

The majority of the data sources and preparatory steps should be included in an incident response plan, which changes based on the type of cloud service model that is being consumed, such as software-as-a-service (SaaS), platform-as-a-service (PaaS) and infrastructure-as-a-service (IaaS).

<table>
<thead>
<tr>
<th>Process</th>
<th>On-Premises</th>
<th>In the Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk imaging</td>
<td>Physical drive connected to forensic workstation</td>
<td>Snapshot taken from Amazon EC2 instance, converted to volume and attached to forensic instance</td>
</tr>
<tr>
<td>Memory acquisition</td>
<td>Physical access to workstation as it’s running</td>
<td>Private key or local user/trusted host access required</td>
</tr>
<tr>
<td>Network logging</td>
<td>PCAP in-line with netflow</td>
<td>Amazon VPC Traffic Mirroring</td>
</tr>
</tbody>
</table>

The Incident Response Process

Let’s start by outlining the incident response process. An incident response is typically triggered by reports of “something happening” or notification that “something happened.” Figure 1 shows the steps for responding using the SANS six-step incident response methodology.²

This methodology can easily be adapted to cloud-based environments. Here’s a simple example:

- **Preparation**
 - What cloud service provider is being used?
 - What is the deployment model? (Public, hybrid, private?)
 - What is the cloud model? (SaaS, PaaS, IaaS?)

- **Identification**
 - Is there unusual activity in the audit logs?
 - Did something get misconfigured?

- **Containment**
 - Can we disable a user’s access?
 - Can we isolate the VM or subnet?
 - How do we acquire an image?

² Because this paper is an exploration of performing investigations in AWS, it is important to talk about the tools available. The use of these examples is not an endorsement of any product or service.

• **Eradication**
 - Can we remove affected systems?
 - Can we remove/replace compromised credentials?

• **Recovery**
 - Can we restore normal business operations?
 - Is a business continuity plan available?
 - Did that plan need to be implemented?

• **Lessons Learned**
 - What gaps in coverage did we discover?
 - How do we close those gaps?

For cloud-based environments, the preceding methodology does not provide a complete incident response plan; however, we can see there may be some crossover from an on-premises plan, but it is not a one-for-one replacement when moving to the cloud.

Shared Responsibility Model

The shared responsibility model is a common method of determining where the responsibility shifts and which party is responsible for specific parts of the infrastructure. Depending on the type of service you’re consuming, the provider can be responsible for some aspects or most aspects of the cloud.

Typically, with IaaS, the provider is responsible for security of the cloud, while our security teams are responsible for security in the cloud. When moving to IaaS providers, such as AWS, security teams must consider capabilities and services like the ones shown in Table 2.

Modern Security Controls

A typical on-premises environment may include the following tools that could be used in conducting incident response or investigations:

- Network intrusion detection systems (NIDS)
- Packet capture devices or network taps
- Vulnerability management scanners
- Endpoint detection
- Proxies and firewalls

When we move our investigations to a cloud-based environment, there are no decisions like “Where to ship my NIDS, network taps, vulnerability management, etc.…” details. This is because we lose physical access to our infrastructure. That is okay. Instead of worrying about physical infrastructure, we can now focus on how to modernize our security controls.
AWS Marketplace allows security teams to stand up modern tooling that can come in the form of SaaS or AMIs and allow organizations to use the capabilities provided by AWS Partners to supplement the services that are available directly from AWS.

To better understand how to conduct an investigation within AWS, it is best that we understand the native services available to security practitioners so that we can understand what is and is not possible out of the box. This also strengthens the understanding of how to integrate the different capabilities that third-party tools offer.

Using AWS Services in Investigations

As part of the evidence gathering and analysis process, user attribution information tells us about the activity that a particular resource or user has performed. In the following sections, we discuss these activities as well as describe how to gain insight into network traffic.

Understanding User Activity

AWS CloudTrail gives security teams the who/what/when/where/how of the activity being investigated. This is the information that the auditing data teams need to better understand a user’s actions. By default, AWS CloudTrail is enabled within the AWS Management Console. However, to ship these logs out of the account to a SIEM or log analysis tool, we need to set up a trail first. If we look at an example of an AWS CloudTrail log in the AWS Management Console, security teams have multiple ways to search for data:

- **Username**—Search by the user’s name
- **Event name**—Search by a specific API call (e.g., DeleteTrail)
- **Resource type**—Search by an AWS service type (e.g., Amazon EC2 instance)
- **Resource name**—Search by a resource name (e.g., instance ID, ENI)
- **Event source**—Search results from specific AWS services
- **Event ID**—Search based on a unique ID for an AWS CloudTrail event
- **AWS access key**—Search by access key to show what was done in a single session

Figure 2 shows an example of an AWS CloudTrail event.

```
{  
  "eventVersion": "1.05",  
  "userIdentity": {  
    "type": "IAMUser",  
    "principalId": "ASIAZDUVW00000012345678",  
    "arn": "arn:aws:iam::1234567890:principal:Marc_the_Intern",  
    "accountId": "1234567890",  
    "userName": "Marc_the_Intern"  
  },  
  "eventTime": "2019-09-04T23:00:13Z",  
  "eventSource": "login.amazonaws.com",  
  "eventName": "LoginUser",  
  "awsRegion": "us-east-1",  
  "sourceIPAddress": "178.12.34.45",  
  "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36",  
  "requestParameters": {},  
  "responseElements": {}  
}
```

The **userIdentity** used for the event:
- **type**: Shows if a role or user was used
- **principalId**: Unique identifier for this specific user (Think SID)
- **arn**: Amazon Resource Name
- **accountId**: Which account ID was logged into
- **userName**: User that authenticated

Additional details:
- **eventTime**: Zulu time for when the event occurred
- **eventSource**: How the API was called
- **eventName**: One of many API calls that can be used within AWS
- **awsRegion**: Which region the console was set to log into (can vary depending on how the login was initiated; good source to determine if activity is occurring outside of normal regions)
- **sourceIPAddress**: The IP address that the request was sent from
- **userAgent**: Fingerprint of what was used (browser or CLI version)
- **requestParameters**: What was included in the request
- **responseElements**: If the API delivers a response, this section contains additional details

Figure 2. An AWS CloudTrail Event
By looking at the single AWS CloudTrail event shown in Figure 2, we can piece together that the user (Marc the intern) successfully logged into the AWS Management Console using Google Chrome, from IP address 11.22.33.44, using a password with no multifactor authentication.

Keeping this information in mind, the majority of these fields remain persistent in each AWS CloudTrail event as we look to conduct an investigation. Having this data visualized and stored in a central location aids us significantly. Not only do we benefit from having the logfiles stored in a single location under the security team’s control, but we have heightened security controls around this storage. Visualization allows investigators to demonstrate the activity and the location from which the activity was performed.

Gaining Visibility into Network Traffic

Amazon VPC Flow Logs provide visibility of network traffic going in and out of a VPC, also known as north-south traffic.

Looking at the structure of a VPC Flow Log, we see the details listed in Figure 3.

![Figure 3. Structure of a VPC Flow Log](image)

Amazon VPC Flow Logs give us a high-level view of network traffic. Exporting this data to a SIEM can add more context to Flow Logs by correlating threat intelligence data to the source or destination IP addresses to determine whether Amazon EC2 instances are communicating to potentially hostile hosts, such as those known from cryptomining or botnets.

Amazon VPC Traffic Mirroring is another method of obtaining insight into your network traffic that is available on AWS Nitro instances. What’s handy about Amazon VPC Traffic Mirroring is that it’s a “spanport-as-a-service” that enables security to send all north-south traffic to another instance for further analysis, if required, or integrate to another traffic-analysis toolset.

Forensic Acquisition

Should the incident require the security team to perform forensics on an Amazon EC2 instance, we need to take a snapshot of that instance and create a volume from that snapshot to share to a SIFT Forensic Workstation.

The following steps are an example of that process for a compromised implementation:

1. Create a security group that does not allow outbound traffic
2. Attach to compromised Amazon EC2 instance
3. Take snapshot of Amazon EC2 instance
4. Perform memory acquisition, if possible
5. Share snapshot with Security Account (if using one)

We highly recommend that you enable Amazon VPC Flow Logs for your VPCs; they are not enabled by default.
6. Create volume from snapshot
7. Attach volume to SIFT EC2 instance
8. Conduct forensics

It is possible to automate this process, which would provide faster data acquisition and response.

Use Case: An Investigation

Consider a case where the internal audit organization has approached the security organization. The audit organization requires an investigation of the user, Marc the Intern. It also requests that the security team acquire a forensic image, summarize that image and include a summary of the communications the instances had if Marc created any Amazon EC2 instances.

With running the Amazon EC2 instance, the security team wants to understand what this instance is doing so it can perform further analysis. After acquiring a snapshot, the team converts the snapshot to a volume so that it may attach the new volume that contains evidence to its analysis instance.

The team finds that Marc had access keys on this instance, which is not common in the organization’s environment. What did Marc do with these keys? Looking back at the AWS CloudTrail logs, the team sees that this access key spun up another instance, in a region the organization doesn’t currently leverage. Was Marc trying to fly under the radar? Or did he accidentally script this instance creation and forget to set a region?

The final requirement from the internal audit organization is to explore what this instance had been communicating to. When the security team looks at the instance configuration further, it sees that the Amazon VPC Flow Logs show that this instance was communicating to a remote host over ICMP—an abnormal behavior. Fortunately, the team requires Amazon VPC Traffic Mirroring to be enabled on new Amazon EC2 instances that are created. This instance’s traffic has been captured, so the team is able to analyze what was going over ICMP.

After further exploration, the team can piece together a timeline of events for its report to the requesting audit organization.

Summary

When moving to the cloud, it’s best to outline a new incident response plan and plan out how you are able to perform investigations within AWS so that you can validate that any obligation you may have as a security organization can be met as well as it once was in-house.

With the fast and dynamic pace of the cloud, and with adoption of these new services increasing every day, security organizations need to review how they can adapt their processes and stay ahead to proactively enable developers and decrease risk in the environment.
Kyle Dickinson teaches SANS SEC545: Cloud Security Architecture and Operations and has contributed to the creation of other SANS courses. He is a cloud security architect for one of the largest privately held companies in the United States. As a strategic consultant in his organization, Kyle partners with businesses in various industries to better understand security and risks associated with cloud services. He has held many roles in IT, ranging from systems administration to network engineering and from endpoint architecture to incident response and forensic analysis. Kyle enjoys sharing information from his experiences of successes and failures.

SANS would like to thank this paper’s sponsor:

aws marketplace
Upcoming SANS Training

Click here to view a list of all SANS Courses

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Location</th>
<th>Dates</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS DFIRCON 2019</td>
<td>Coral Gables, FLUS</td>
<td>Nov 04, 2019 - Nov 09, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>MGT521 Beta One 2019</td>
<td>Crystal City, VAUS</td>
<td>Nov 12, 2019 - Nov 13, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>GridEx V 2019</td>
<td>Online,</td>
<td>Nov 13, 2019 - Nov 14, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Atlanta Fall 2019</td>
<td>Atlanta, GAUS</td>
<td>Nov 18, 2019 - Nov 23, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>Pen Test HackFest Summit & Training 2019</td>
<td>Bethesda, MDUS</td>
<td>Nov 18, 2019 - Nov 25, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Austin 2019</td>
<td>Austin, TXUS</td>
<td>Nov 18, 2019 - Nov 23, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Bangalore 2019</td>
<td>Bangalore, IN</td>
<td>Nov 25, 2019 - Nov 30, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Nashville 2019</td>
<td>Nashville, TNUS</td>
<td>Dec 02, 2019 - Dec 07, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS San Francisco Winter 2019</td>
<td>San Francisco, CAUS</td>
<td>Dec 02, 2019 - Dec 07, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Frankfurt December 2019</td>
<td>Frankfurt, DE</td>
<td>Dec 09, 2019 - Dec 14, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Austin Winter 2020</td>
<td>Austin, TXUS</td>
<td>Jan 06, 2020 - Jan 11, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Miami 2020</td>
<td>Miami, FLUS</td>
<td>Jan 13, 2020 - Jan 18, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Amsterdam January 2020</td>
<td>Amsterdam, NL</td>
<td>Jan 20, 2020 - Jan 25, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Anaheim 2020</td>
<td>Anaheim, CAUS</td>
<td>Jan 20, 2020 - Jan 25, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>Cyber Threat Intelligence Summit & Training 2020</td>
<td>Arlington, VAUS</td>
<td>Jan 20, 2020 - Jan 27, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Vienna January 2020</td>
<td>Vienna, AT</td>
<td>Jan 27, 2020 - Feb 01, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Mumbai 2019</td>
<td>OnlineIN</td>
<td>Nov 04, 2019 - Nov 09, 2019</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS OnDemand</td>
<td>Books & MP3s OnlyUS</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
</tbody>
</table>