Interested in learning
more about security?

SCORE
SANS

SANS Institute

Security Consensus Operational Readiness Evaluation

This checklist is from the SCORE Checklist Project. Reposting is not permited without express, written permission.

SCORE Security Checklist

Copyright SANS Institute
Author Retains Full Rights

https://www.sans.org/score/
https://www.sans.org/security-training/
https://www.sans.org/score/
https://www.sans.org/score/
https://www.sans.org/score/checklists
https://www.sans.org/

Rootkits
What is a rootkit?

A rootkit is a special variant of a Trojan, a.k.a. a RAT (Remote Administration
Tool). What separates a rootkit from a regular Trojan is that a rootkit, by definition,
occupies Ring 0, also known as root or kernel level, the highest run privilege
available, which is where the OS (Operating System) itself runs. Non-rootkit trojans
typically run in Ring 3, or user level, which is where ordinary applications run,
though some sources refer to userland trojans as “rootkits” also. Usually, but not
always, a rootkit will actively obfuscate and attempt to hide its presence from the
user and any security software present.

Rootkits subvert the OS through the kernel (core operating system) or
privileged drivers. This enables a rootkit to operate as a part of the OS itself rather
than a program being run by the OS. This high level of sophistication makes rootkits
extremely difficult to detect and remove. Often anti-virus products will be unable to
detect or remove a rootkit once it has taken over the OS and more specialized
detection and removal procedures are required.

What kinds of rootkits are there?

Rootkits may use a variety of techniques to gain control of the operating
system and hide from both the user and security software. Different techniques may
be used in combination to increase overall effectiveness. There are many variations
and not every technique will be discussed. Only those most relevant and common
will be discussed here. * Some common techniques include:

MBR infection

The MBR or Master Boot Record is the portion of the hard drive that tells the
BIOS (Basic Input Output System) where to find the OS (Operating System). This is
a critical handoff of responsibility between the BIOS which does the initial boot
sequence when the computer is started and the OS which takes over. By subverting
this process the rootkit (sometimes called bootkit) is able to inject itself between the
computer's hardware and OS, subtly altering data sent back and forth to mask its
presence and take over the system.

Every time the OS tries to read files from the hard drive the rootkit intercepts
the attempt and substitutes either fake data to hide itself or modified data to trick
the OS into loading and executing infected files. By selectively intercepting attempts
to read and execute kernel drivers the rootkit loads itself into memory and takes
over the OS. If the user attempts to view the rootkit files, the rootkit can give a
false report of there being no trace of its files. Since the rootkit often never actually
modifies the OS files on the hard drive itself, but only gives modified data when the
file is being loaded into memory, it becomes even harder to detect. It can also
detect and intercept any attempt to delete the rootkit itself or any portion thereof.
Even if the rootkit is deleted, since it is loaded in the MBR, the system can be
reinfected when it is rebooted.

1. OS subversion techniques used by ordinary trojans, such as IAT and EAT hooks, malicious App_Init
DLLs, etc are out of scope for this document. Only kernel level attacks are presented, so additional
information regarding these and other user mode attacks are left to the reader.

Newer versions of Windows incorporate protections to prevent the MBR from
being written to. However, rootkits have evolved to overcome this by writing directly
to the disk using SRB (SCSI Request Blocks). Not all computers use the MBR
method of booting the OS. Newer PCs may use EFI (Extensible Firmware Interface)
or UEFI (Unified Extensible Firmware Interface) which will be discussed later in the
document.

Hypervisor

A hypervisor is a virtual machine manager, which when used for legitimate
purposes allows a single physical computer to host and run more than one 0OS
simultaneously by creating multiple virtual machines, each of which appear to the OS
to be a physical computer. It simulates hardware and intercepts attempts by the OS
to access the hardware, then translates the request, and passes it to the actual
hardware. Hypervisors have many legitimate uses in computing, however a rootkit
can create a malicious hypervisor to hide its existence from the OS and the user.

There are several types of hypervisor rootkits. Some modify the bootloader
to create the malicious hypervisor during the bootup process in a way very similar to
an MBR rootkit. Others can subvert the OS and migrate it into a virtual machine
while it is still running, without any indication to the user and without requiring a
reboot. This is possible due to hardware support for virtualization built into most
modern CPUs. Intel's virtualization architecture is called VT-x and AMD’s is called
Pacifica.

A hypervisor rootkit would subvert a running OS by first checking to see
whether the hardware supports virtualization using a function such as vmx_init. It
would then reallocate system memory and split system resources using a function
such as vmx_fork which will put the rootkit into a privileged Supervisor mode beyond
Ring 0. It will then put the running OS and all active processes into a non-privileged
non-root mode where they cannot see or interact with the actual hardware or the
processes of the rootkit.

The hypervisor rootkit emulates virtual hardware for the OS, which the OS
cannot detect to be any different from the actual hardware. In such a situation the
rootkit becomes almost impossible to detect from within the compromised OS,
because it controls what the OS "sees". The only certain way is to do a forensic
exam of the hard drive to look for backdoors or modifications to the bootloader which
would allow the rootkit to reload after a reboot.?

The rootkit can also suspend its operation and even temporarily exit out of
virtualization mode if it detects the OS is attempting an operation which may
uncover its existence, such as by checking to see if virtualization extensions are
active or attempting to detect timing irregularities in certain system calls such as
CPUID. Because a hypervisor introduces a certain amount of latency in addition to
what would normally be expected without a hypervisor it may be possible to detect
some less sophisticated hypervisor rootkits. This is not reliable however for
advanced rootkits which can suspend or exit the virtual mode temporarily.

2. Hypervisor rootkits which are injected into memory and do not modify the file structure on the hard
drive will not be able to be detected by an examination of the hard disk, but will also not survive reboot.

Alternate Data Streams

Alternate Data Streams or ADS are a little known function of NTFS, a popular
file system used by Microsoft Windows products. ADS allows the OS to store
metadata about a file without changing the file itself. ADS are not viewable by
Windows Explorer or other common file viewers. They make a very good hiding
place for rootkits because there is no limit to the number or size of files that can be
stored invisibly in ADS. An executable may be stored in ADS and executed without
ever showing up on a file or directory listing. More and more AV (anti-virus)
products are now scanning ADS, so this is no longer widely used for modern trojans,
but is still common in rootkits a few years old. However, if you examine an infected
hard drive on a non-infected computer, you may be unable to detect the rootkit files
using standard file explorers and will need specialized tools which can scan ADS. It
is possible to manually create and read ADS streams, but only if you know the exact
stream identifier expressed in the form "“drive letter:\path\filename:stream”. For
example c:\temp\tmpfile.tmp:hidden.exe

Slack space

Every file on a hard drive is allocated a certain amount of space. Because
space is allocated in fixed size "chunks" or disk clusters, most often the file that has
been allocated the space doesn't use all of its allocated space and there is a little bit
left over. This is known as slack space. Rootkits have long been known to hide in
such areas of the disk, spread out over the slack space allocated to several normal
files. Ordinary attempts to read the portions of the disk where rootkit resides will
simply show the file to which those disk clusters have been allocated. It takes
specialized tools to read these sections of the disk, and even then it is difficult to tell
a rootkit in slack space from the random junk data that would normally be there
anyway.

A rootkit taking advantage of this method will most likely store itself in the
slack space of protected system files that will not change much or ever, because of
the risk of having itself overwritten when the file to which the space is allocated
grows in size. Most AV tools and even AR (anti-rootkit) tools are not able to scan
slack space, which makes this an excellent hiding place for malware which will enable
it to remain undetected even when the hard drive is examined on a non-
compromised system.

Bad Sectors

Over time a hard drive may develop sectors (storage units) which can no
longer be reliably read from or written to, these are called bad sectors or bad blocks.
The OS keeps a record of these bad sectors in the MFT in Windows and the bad
blocks inode in Linux so it will not try to write to them in the future. Sectors marked
as bad are generally not readable because in most modern drives they are
transparently mapped to a pool of spare sectors either by the drive controller
hardware or in some cases the OS.

Because of this bad sectors make a favored hiding place for rootkits,
preferred over slack space because there is no danger of data in bad sectors being
overwritten. The rootkit simply marks the locations on disk where its files are stored
as bad, making those sectors inaccessible without direct disk access. Most software
uses APIs (Application Programming Interface) to access hardware, which requires
the hardware access request to go through the OS. This data hiding technique
makes the rootkit invisible to both regular AV and even specialized AR tools which
use standard APIs for scans. Forensic software capable of direct disk access and
reading raw sector data would be required to locate data stored in bad sectors, and
often rootkits using this method of hiding will intercept direct disk access requests
requiring the disk to be examined on a non-compromised system.

Hidden Partition

A partition is a logical division of the physical hard drive used for data access.
Some rootkits create a hidden partition within an existing disk partition. In order to
do this the rootkit has to create a disk object and a disk driver to access the new
hidden disk. In a Windows system this would either involve copying the existing
disk.sys driver object and modifying the dispatch function and device object to point
to the hidden partition or creating a whole new device object and driver set from
scratch.

Usually the IRP table will also be hooked to monitor and control access to the
hidden disk object and prevent the OS from accidentally overwriting the hidden data
since it overlaps the ordinary disk partition the OS already knows about. The rootkit
may also create a fake file and allocate the portion of the disk used by the hidden
partition to the fake file to prevent the OS from trying to allocate that space for
another purpose.

Commonly the hidden partition will be allocated a section of the hard drive at
the very end as this is the least likely to already have data. Any existing data will be
moved and the rootkit will intercept access attempts and transparently redirect them
to wherever it has moved the data. Modern rootkits will also encrypt the hidden
partition making it impossible to read without the correct encryption key and
encryption algorithm.

Interrupt Hooks

The OS uses a set of basic commands to interface with the computer
hardware as mediated by the BIOS. These commands are known as interrupt calls
and given numbers in hexadecimal. A rootkit which is able to intercept and modify
these calls is said to have hooked that call. Depending on how the interrupt is
hooked it may be known as an INT hook or IDT hook. Since interrupt calls are the
most basic, a rootkit which is able to hook them has control over the hardware at a
very low level. This technique is most commonly seen in MBR rootkits because INT
calls are used in the boot process. Specifically INT 13h, which enables direct access
to the hard drive, is commonly hooked by MBR rootkits. This enables a rootkit to
modify the disk directly, subverting any access control on the part of the OS. It also
enables the rootkit to intercept any attempt by the OS to read or modify data on the
disk and prevent or alter attempted data reads or modifications.

Message Hooks

Programs running in memory use messages to communicate changes and
user input to other programs and the OS. A message hook is used to either monitor
or intercept messages before they reach the intended system process. For Windows
OS they are created by calling the SetWindowsHook function with appropriate
parameters. Rootkits will often set message hooks because all user input,
keystrokes and mouse movements, creates messages. A rootkit which has hooked
these messages will be able to read and record all user activity on the PC. Since
there are many different messaging subroutines, it allows very fine grained control
over which functions will be monitored. Some common message hooks used by
rootkits are WH_KEYBOARD, WH_KEYBOARD_LL, WH_MSGFILTER, and WH_MOUSE.

SSDT Hooks

The System Service Descriptor Table or SSDT is used by Windows OS to
locate system services which are crucial to the functioning of the OS. In Linux OS
this function is held by the System Call Table. A rootkit which hooks this table can
alter it so that important system calls are routed to the rootkit. Any program which
attempts to use the SSDT will instead be funneled to the rootkit, and since the SSDT
is fundamental to the OS, every program must use it. SSDT hooks are very powerful
and commonly used by rootkits for stealth.

For example, if the NtQueryDirectoryFile function is hooked, the rootkit can
return false information to requesting programs, such as AV, about files and
directories on the hard drive, making itself invisible. In the same way, a rootkit may
hide its running processes, network activity, or Registry entries, such as with
NtEnumerateKey and NtEnumerateValueKey or for Linux sys_getdents and
Ssys_write.

Because of the frequent use of SSDT hooks, many anti-rootkit programs scan
the SSDT for modifications, however rootkits are able to hide changes to the SSDT in
a variety of ways, such as by modifying the KTHREAD structure or modifying the
SSDT "on the fly" without leaving permanent traceable changes. Newer Microsoft OS
and 64bit OS have made hooking the SSDT much more difficult, however this is still
very common on Windows XP rootkits.

IRP Hooks

Any time a program needs to send or receive data from the computer
hardware an I/O Request Packet (IRP) is used as an intermediary between hardware
and software. This includes reading and writing data from the hard drive, RAM,
video, audio, and network. Hooking IRP generally involves modifying or replacing
hardware drivers. Rootkits use this method as another way of gaining privileged
access to hardware, while intercepting other access attempts.

A rootkit which has modified disk driver disk.sys or the low level disk driver
atapi.sys can control what other programs see on the hard drive, while tcpip.sys
allows a rootkit to hide network traffic. Initially few rootkits used these techniques,
but as other techniques came under more scrutiny, more and more rootkits began
using IRP hooks and coming up with novel ways to hook the IRP subsystem without
leaving obvious hooks in place.

For example by modifying the lowest level device driver for the hard drive
\Device\HarddiskO\DRO to no longer point to the default IRP handling subsystem via
IRP_MJ_INTERNAL_DEVICE_CONTROL routine but a parallel system controlled by the
malware, or adding a malicious device into a target device's IRP chain via
IoAttachDevice. These are both sneaky ways to redirect IRPs without having to
modify the IRP dispatch table itself. Since there are many different drivers for
hardware, this makes detecting hooks that much harder for anti-rootkit software,
especially since, unlike SSDT, pointers in the IRP table are not all expected to point
back to the kernel, since there are many 3rd party drivers in use.

Other commonly hooked procedures include: IRP_MJ_READ, IRP_MJ_WRITE,
IRP_MJ_SCSI, and DriverStartlo. Since some AR products began using passthrough
IOCTLs to directly access the disk and bypass the rootkit hooks, newer rootkits are
additionally hooking IRP_MJ_DEVICE_CONTROL subcontrols such as
IOCTL_ATA_PASS _THROUGH and IOCTL_ATA_PASS_THROUGH_DIRECT or
SCSIOP_READ and SCSIOP_WRITE.

DKOM

A kernel object is a virtual placeholder for a resource that contains
information about it. Everything on a computer will have an associated kernel
object, every file, every process, every port, etc. When a kernel object is created, it
is given an index number called a handle, through which it is accessed. When a
program wants to make a change (e.g. create or destroy a process), it makes a
request to change the kernel object, and the kernel itself (Object Handler) decides
whether to grant or deny the request.

Normally the kernel itself is the only one able to directly change kernel
objects, however, in the last few years, rootkits have appeared which are able to
access kernel objects directly in what is called Direct Kernel Object Manipulation
(DKOM). It is another tool in the toolbox of the malware writer to be able to hide
thier own processes and drivers while interfering with other processes and files. But
it is much more stealthy than other methods such as replacing device drivers and
hooking tables for 2 reasons: 1. Because changes occur in memory only, there is no
record of them, and 2. Because no other program, not even AV, can access the
kernel objects, what happens in this reserved memory region is somewhat "behind
the curtain".

In Linux DKOM can be accomplished by writing to /dev/mem or /dev/kmem.
A DKOM rootkit in Windows XP will use the undocumented API
NtSystemDebugControl a hidden API used to directly access kernel memory.
However, it must open a handle to the memory at \\Device\PhysicalMemory, which is
one method of detecting it.

By modifying the EPROCESS structure, a DKOM rootkit can hide running
processes. Other often modified kernel objects are ETHREAD, TOKEN, and DRIVER.
These attacks allow the rootkit to hide processes and device drivers and change
process access tokens. A rootkit that modifies the kernel object of the page fault
handler can hide the contents of RAM from any other program. This means such a
rootkit can hide its own existence even from a scan of objects in memory or running
processes.

However, rules for manipulating kernel objects will change from one version
of the OS to another, making manipulation of those objects challenging, also because
of the delicacy of the operations involved any mistake will result in a system crash,
which can be a giveaway. Despite the difficulties in DKOM, it is expected more and
more rootkits will be using them in the future, since advances in OS security are
rendering hooks more difficult and because all OS must use kernel objects.

The latest versions of some rootkits are using DKOM to great effect by
blending it with IRP hooking, using DKOM to create phony devices and setting IRP
hooks on the phony device while using DKOM to link the phony and real device by
modifying the OBJECT_HEADER structure. In this way, the actual device is not
shown as being hooked, so it can evade anti-rootkit techniques. There is a great
deal of innovation occurring with DKOM rootkits and more creative methods of using
them to manipulate and hide data is to be expected.

Rootkit Trends - 2011

Rootkits are increasingly developed by professional malware developers
working in teams and accordingly are becoming highly sophisticated and complex,
comparable in many ways to the AV and AR products devoted to catching them.
Modern rootkits are highly obfuscated to confuse forensics and frustrate reverse
engineering, incorporate encrypted files, encrypted communications, and a modular
design that allows different types of malware from different designers to work
together by exporting malicious APIs and syscalls. This modular design allows
malware developers to specialize in one particular area: initial infection, hiding
malware files and activity, payload functionality, ie botnet, search engine results
modification, sending spam emails, capturing sensitive user data, etc, and
specialized plugin functions, ie keylogging, HTTPS, etc. These trends are making
rootkits more flexible and powerful as well as harder to detect and remove.

Rootkit detection

Since rootkits go to great pains to hide, they can be quite difficult to detect.
Additionally, since kernel rootkits run in Ring 0, they can subvert any other software
running, including tools trying to find them. For this reason, it is a good idea to take
the hard drive out of the suspected infected machine and attach it to a known clean
machine for examination.

One of the first indicators of a rootkit infection is system instability. Since
rootkits often replace core system drivers, any malfunction will crash the system.
Since rootkit drivers are not subject to the same quality standards of an OS vendor
bugs and system crashes are common, though this is becoming less true over time
as professional level rootkits become more common. Additionally, often rootkits are
designed to work with a very specific patch level for an OS. So if the OS is patched
and some dll is replaced that the rootkit has modified, it can cause serious system
problems, such as lockups and crashes. But then there are a few rootkits that don't
even try to be stealthy and pop up advertisements for pornography as well. All of
these can be potential indicators that a deeper examination is needed.

Prior to making any changes to a potentially rootkit compromised system, it is
a good idea to learn as much through passive observation as possible. Many rootkits
monitor system activity very closely and are programmed to look for anti-rootkit
programs running in memory and attempts to read or change sensitive areas of the
OS and hard drive which may represent attempts to detect or remove the rootkit.

Rootkits with an observer process will usually have some self defense code
which will activate if it detects any attempt to remove the rootkit. This can be
anything from terminating the process, to unhooking hooked tables and drivers, to
moving its code around in memory or on disk in an attempt to thwart investigation.
For this reason, it is a good idea to make a clone of the hard disk of the potentially
infected machine to examine without running the risk of alerting the rootkit on the
running machine that it is being investigated. With a clone you can safely kill
processes, modify files, and generally poke into the suspected rootkit and observe if
there is unusual behavior in response to this.

Kernel Mode Signing

One of the major security flaws of past Windows OS is that device drivers
were loaded in Ring 0. This is a major problem because device drivers often come
from 3™ parties and are unverified, meaning they could be buggy or include
malicious code. This was a common way for rootkits to load themselves into kernel
memory in the past. 64 bit versions of newer Windows, Vista and later, incorporate
a security measure called kernel mode signing. This requires all kernel mode drivers
to be cryptographically signed, certifying their origin and trusted status.

Modern rootkits have found ways to overcome this security control. Rootkits
which subvert the MBR may use functions normally used for debugging purposes,
BcdLibraryBoolean_DisableIntegrityCheck and
BcdLibraryBoolean_AllowPrereleaseSignatures. Since an MBR rootkit controls the
boot process it is able to set either of these options at boot time to disable code
signing requirements and load malicious, unsigned kernel drivers.

Kernel Mode Patch Protection

Another security feature found in 64 bit versions of Windows, XP and newer,
is kernel mode patch protection (KPP) also known as PatchGuard. It prevents
modifications to the SSDT, IDT, GDT, and MSRs, creation of kernel stacks, and inline
patching of the kernel or kernel libraries. However, PatchGuard has several well
known bypass techniques, including hooking and/or modifying the PatchGuard code
itself or supporting system functions like the exception handler. Because the code
PatchGuard is attempting to regulate runs in Ring 0, it has full access to the kernel
and there is an ongoing cycle of attacks to disable or evade PatchGuard’s protections
and updates to PatchGuard to counter those attacks.

Unified Extensible Firmware Interface

The security design flaw exploited by MBR rootkits is that if they can get
direct access to the hardware at boot time all future software checks become
meaningless. UEFI includes a security control to eliminate this threat in the
hardware itself called secure boot. Secure boot requires cryptographic signatures on
all code loaded at boot time. The signatures create a chain of trust from the
software developer up to the certifying authority which certifies the software as
trusted. Any unauthorized modifications to a signed bootloader will cause the
integrity check to fail and prevent the system from booting. While this is not fool
proof it does provide a high degree of protection against rootkits and other malware
which may attempt to modify the bootloader or key boot components, i.e. NTLDR,
bootmgr, winload.exe, winresume.exe, or kdcom.dll. UEFI is becoming more
commonplace and is widely supported by hardware manufacturers and most modern
0S. As of this writing, there have been no verified instances of malware able to
bypass UEFI protections.?

Hardware Assisted Security

A major stumbling block to anti-rootkit efforts is the fact that all software
running in privileged execution mode (ring 0) on the CPU and with direct access to
hardware is effectively on equal terms with the OS, meaning a rootkit can alter or
disable the AR software hunting for it. Several attempts have been made to
incorporate AR technology directly into the hardware to give more of an advantage.
One of these was a PCI card called copilot which contained rootkit hunting code
burned into the firmware, able to monitor the host’s memory and filesystem at the
hardware level. This technology never caught on in the private sector but was
popular in the government sector.

3. Secure boot depends on the chain of trust established by certificate authorities, which has been
successfully broken in rare instances. PKI and chain of trust attacks are outside the scope of this paper.

Another hardware assisted security technology is called DeepSAFE. This
relies on virtualization, creating a hypervisor that runs at a higher level of privilege
than the OS and kernel level code within the OS, including rootkits. This means that
the scans running from within the hypervisor based security code cannot be easily
bypassed because it is not vulnerable to hooking from the OS layer. It can also
freeze the running system and examine the contents of RAM directly without having
to rely on the OS, which may have been subverted.

Compare Integrity Assurance Snapshot

If you have a snapshot of the hard drive from a known clean state using one
of the many intergrity assurance software products, such as Tripwire, Samhain,
OSSEC, AFICK, or AIDE, you can use it to track changes to the hard drive. This will
show you files and registry settings added, removed and altered, which is a good
first step to trying to track down changes made by a rootkit.

Be aware that the registry changes frequently as a matter of course and temp
files are regularly created and deleted in the appropriate folders. Rootkit authors are
aware of this and may try to mimic these normal patterns by hiding a rootkit in /tmp
or a .tmp file for example. Look for changes in any critical OS directories and cross
reference with the logs to determine if those were authorized changes. Registry
entries which could be used to load a rootkit into memory should also be given
special attention, some examples would be:

HKLM\SYSTEM\CurrentControlSet\Services,
HKLM\Software\Microsoft\Windows\CurrentVersion*
HKCU\Software\Microsoft\Windows\CurrentVersion*
HKLM\Software\Microsoft\Internet Explorer*
HKCU\Software\Microsoft\Internet Explorer*
HKCR\exefile\shell\open\command
HKLM\Software\Classes\exefile\shell\open\command
HKLM\Software\Microsoft\ActiveSetup\InstalledComponents

Anti-Rootkit Products

There are a number of specialized anti-rootkit (AR) software products
available, some free and some commercial products. Some Windows AR include:
Rootkit Revealer, Blacklight, Rootkit Unhooker, GMER, Icesword, RAIDE, and Helios.
Some Linux AR include: chkrootkit, Rkdetector, rkhunter, Zeppoo, kstat, elfstat, and
KsID. While none of them are capable of detecting every rootkit, they can provide
some very useful information about the state of the OS.

Many older rootkits use direct SSDT and IAT hooks. In other words they
modify the tables to point directly to the rootkit code. These types of changes are
trivially easy for a scanner to detect. The AR scanner simply scans the IAT and
SSDT tables for pointers which don't point to the kernel itself. It then presents a list
of these hooks to the user for examination.

However, just because a hook is present, doesn't mean there is a rootkit.
There are other legitimate software applications which may also install hooks.
System security software such as AV and firewall will often hook SSDT tables. Poorly
programmed software which should use hooks limited to its own process, may
instead install global keyboard or mouse hooks which an AR scanner will flag as
suspicious. AV and firewalls will often hook the network stack or device drivers (ie
chained or filtered device drivers) to protect the system. ADS is used by jpeg image
files and saved webpages. Software debuggers will often hook exception handling
APIs. In Linux systems, SE_Linux will often hook the sys call table. In theory, there
should be few enough hooks in an OS to carefully examine each one to determine
whether it is malicious or part of a known process. However, in order to counter
rootkits which become ever deeply buried in the OS, modern AV and AR products
often embed themselves just as deeply into the OS, in some cases using live kernel
patching techniques. In effect becoming benign rootkits themselves. The
documentation of system modifications for many of these products is woefully
incomplete or non-existent and because of this in some cases it may not be possible
to determine whether a given hook or kernel patch is a sign of a rootkit or an
undocumented AV or firewall function without removing the software.

Several examples of both benign and malicious hooks and kernel patches will
be shown to provide reference for your own investigations.

This screenshot shows Icesword reporting a global keyboard hook.

File Dump Plugin Yiew Help
= ¢ Ao ()

Functions

Look for the KEYBOARD hook

Message Hooks: 7

@ _‘_I Handle l Type [Aéunction I Process Path
- ‘ 0x00080077 WH_MOUSE 0x00001020 C:\Program Filesi¥Mware\¥YMware Tools\¥YMwarel
Startup ‘ 0x004800b3 WH MESSAGE 0x0040a440 C:\Tools\IceSword_en1.12\is_en\IceSword.exe
‘ 0x00ad00f3 0x0000103a C:\TestWare\HomeKeyLoggeriKeyLogger.exe
= * 0x006e00FS WH_MSGFILTER 0x004aeb23 Ci\Tools\IceSword_eni.12\is_eniIceSword.exe
: “0x0043011f WH_CBT 0x00439e80 C:\ToolsiIceSword_en1.12\is_eniIceSword.exe
S\;:"igg < 0x00a7014f WH_CBT 0x004a9daf C:\Tools\IceSword_en1.12\is_eniIceSword.exe
‘ 0x001501a1 WH_MSGFILTER 0x75b6S886 C\WINDOWS\system32\csrss.exe

Newer rootkits do not directly hook tables, but instead modify the code of the
legitimate API handler or dll to insert a JMP instruction within the file header that
points to the rootkit. This leaves the table intact and unmodified, but any process
which attempts to call that API will get redirected to the rootkit. In some cases the
file on disk may be left intact as well and only running code modified.

This screenshot shows Icesword reporting a number of kernel hooks. Of
particular note is that malicious code has been injected into ntoskrnl.exe the OS
kernel for Windows, which has hooked the SSDT APIs for NtOpenProcess,
NtTerminateThread, NtCreateThread, NtCreateProcessEx, NtTerminateProcess, and
NtOpenThread. This particular rootkit is able to monitor and control any attempt to
start a new process or kill an existing one.

Scan Modules Hooks

| -?* | Description
--7-- IAT hook{Addr 1001268):GetProcAddress in C:A\WINDOWS\explorer.exe (7c80ae40 => Scbh77774(in C:\WINDOY
--7-- Inline code modified Address:1001268, Len:4 (In .text of C:\WINDOWS\explorer.exe). Close
----- Inline code modified Address:7c801afS (LoadLibraryEx\W), Len:S {In .text of C:A\WINDOWS\system32ikernel32.¢
--7-- Inline code modified Address:7c90d6ee (ZwProtectVirtualMemory), Len:S (In .text of C:\WINDOWS\system32in

--7-- Inline code modified Address:7c90dfae (ZwwritevirtualMemary), Len:S {In .text of C:AWINDOWS!system32intd| General !
--7-- Inline code modified Address:7c90e47c (KiUserExceptionDispatcher), Len:S {In .text of C:\WINDOWS!system32
----- Inline code modified Address:804dcb22, Len:18 {In .text of C:\WINDOWS\system32intoskrnl.exe). Module ¢

----- Inline code modified Address:804dcb3a, Len:1 {In .text of C\WINDOWSsystem32intoskrnl.exe).
----- Inline code modified Address:804dda%d, Len:1 {In .text of C\WINDOWSsystem32intoskrnl.exe).
----- Inline code modified Address:804e5531, Len:1 (In .text of C:YWINDOWS!system32\ntoskrnl.exe).
----- Inline code modified Address:8053767fF (KeBugCheckEx), Len:S (In .text of C:YWINDOWSsystem32intoskrnl.ex Restol
----- | Inline code modified Address:80581702 :

----- Inline code modified Address:805838e7 (NtTerminateThread), Len:S {In PAGE of C: EWINDOWS'l,system32'gntoskJ

----- Inline code modified Address:80586c45 (NtCreateThread), Len:S (In PAGE of C:\WINDOWS!system32intoskrnl.

----- Inline code modified Address:8058b7cd (NtCreateProcessEx), Len:S (In PAGE of C:\WINDOWS)system32\ntosk:

----- Inline code modified Address:8058e695 (MtTerminateProcess), Len:S (In PAGE of C:\WINDOWS\system32intosk

----- Inline code modified Address:805e1941 {(NtOpenThread), Len:S (In PAGE of C:\WINDOWS!system32\ntoskrnl.e:

--7-- IAT hook{Addr 77dd1218):GetProcAddress in C:\WINDOWS\system32\advapi32.dll (7c80ae40 == Scb77774(in ¢

--7-- Inline code modified Address:77dd1218, Len:4 (In .text of C:\WINDOWS\system32\advapi32.dil).

--7-- IAT hook{Addr 7e41133c):GetProcAddress in C:YWINDOWSsystem32\user32.dll {(7c80aed0 == Scb77774(in C:\,

--7-- Inline code modified Address:7e41133c, Len:4 (In .text of C:{WINDOWS|system32iuser32.dll).

--7-- IAT hook{Addr 77f110b4):GetProcAddress in C:\WINDOWS\system32\gdi32.dll (7c80ae40 == Scb77774(in C:\Ww

--7-- Inline code modified Address:77f110b4, Len:4 (In .text of C:\WINDOWS\system32gdiz2.dll).

--7-- IAT hook{Addr 77a81188):GetProcAddress in C:\WINDOWS\system321Crypt32.dll (7c80ae40 == Scb77774(in C

--?-- Inline code modified Address:77a81188, Len:4 (In .text of C:\WINDOWS\system321Crypt32.dll).

--?-- IAT hook{Addr 76c31238):GetProcAddress in C:\WINDOWS\system32\wintrust.dll {(7c80ae40 == S5cb77774(in C

--7-- Inline code modified Address:76c31238, Len:4 {In .text of C:AWINDOWSsystem32iWintrust.dll).

& Start] e Removable Disk [K:) l lceSword122en || “ lvetrq18845

This screenshot shows GMER reporting inline or "hidden" hooks in the ntdll.dll
process which is used to handle translating user mode applications (Ring 3) API
requests to the kernel. In addition to hooking the virtual memory handler, this
rootkit has also hooked i8042prt.sys and sunkfilt.sys a keyboard and mouse driver
respectively.

_| = GMER 1.0.15.15281

Rootkit/Malware l >3]

‘ @ E | Type | Name | Value [
| 18I C:\WINDDWS\System324DRIVERS S04 2prt. sys entry point in "rsrc' section [0xF8519...
S | init C:\WINDOWSA\System324Drivers\sunkfilt. sps entry point in "init" section [0xF88673...
.U;:]'I text C:\WINDOWShsystem32hsvchost. exe[580] ntdll. dilNtProtectVfirtu... 7CI0DEEE 5 Bytes JMP 00340004,
text C:\WINDOWShsystem32\svchost. exe[580] ntdll. dilNwriteVittual... 7CS0DFAE 5 Bytes JMP D09B000A
text C:\WINDODWS\system32\svchost. exe[580] ntdll. dIlKiUserExcepti... 7CI0E47C 5 Bytes JMP 0093000C
| test C:\WINDOWS\system32\svchost. exe[580] ole32.dilCaCreatelnst... 7750057E 5 Bytes JMP OOFEDDOQA,
| Ltext C:\WINDOWSAE xplorer. EXE[828] ntdll. dlNtPratectVirtualtdemory 7C90DEEE 5 Bytes JMP DDB70004
=L tewt C:\WwWINDOWSAE xplorer. EXE[828] ntdll. dIlNtw/ritetfirtualkd emory 7CI0DFAE 5 Bytes JMP 00C10004,
text C:\WINDOWSAE xplorer. EXE [828] ntdll. dIIKiU serE xceptionDispate... 7C0E47C 5 Bytes JMP 00BE000C
File C:\WINDOWS\System325\DRIVERS 804 2prt. sys suspicious modification

& 'Start]) IceSword122en “=* Removable Disk [K:)] 2 Owner “E

This screenshot shows GMER reporting a keyboard hook and an IRP hook in
atapi.sys, a low level hard disk driver. This is not a sure sign in itself as some
change rollback or shadow copy software may use IRP hooks in the disk driver, but it
should be examined very carefully.

| = GMER 1.0.15.15281

Rootkit/Malware I >3 |

Type I Name | Yalue |
AttachedD... \Driver\Kbdclass \DevicetKeyboardClass0 IsDrv122.5ps

AttachedD... \Driver\Kbdclass \Device\KeyboardClass1 IsDrv122.sys

Device -> \Driver\atapi \Device\Harddisk0\DRD 82939ECH

File C:\WINDOWShsystem32\drivershatapi.sys suspicious modification

'I:l:ln:f: oK

& 'Start] e Removable Disk [K:) \ _Javr ‘

Another common technique among AR products is to examine raw disk data
and compare it to data reported by APIs, or comparing the processes listed in
PsActiveProcessHead with the processes listed by Task Manager. Discrepancies are
reported as hidden processes and files.

This screenshot below shows Rootkit Revealer reporting a number of hidden files.
However, these all appear to be false positives. Any file which changes between the time the
first (raw) scan is done and the comparative (API) scan is done will show up as discrepancies

‘,ﬂ: RootkitRevealer - Sysinternals: www._sysinternals.com

File Options Help

Path l Timestamp I Size l Description]
@' HKLMASECURITY PaolicyhSecretshS... 2/6/2007 5:3... Obytes Key name contains embedded nu...
@' HKLMASECURITY PalicyhSecretshS... 2/6/2007 5:3... Obytes Key name contains embedded nu...
Q’ HKLMASECURITY Policy\Secretshx... 2/6/2007 5:1... Obytes Key name contains embedded nu...
ﬁ HKLMA\SOFTWARE \Microsoft\Crypt... 6/27/2007 4.... 80 bytes Data mismatch between Window...
= 0bytes Hidden from Windows AP,

@ “$Repair: $Config 2/6/2007 3:1... 8 bytes Hidden from Windows API. —

CONETHf 6/27/2007 11... O bytes Hidden from Windows API.

L 1\$TxfLog 2/6/2007 3:1... 0 bytes Hidden from Windows AP
@] "$TxfLog\$Tops:$T 2/6/2007 3:1... 8.25 MB Hidden from Windows AP,

@ C:A$Extend $RmMetadata\$Repair 2/6/2007 3:1... Obytes Visible in directory index, but not ...

L CASEstend\$RmMetadata\$ T xf 6/27/2007 11... Obytes Visible in directory index, but not ...
I CASE stend\$RmMetadatat$TxfLog 2/6/2007 9:1... 0 bytes Visible in directory index, but not ...
@ C:A$Extend\$RmMetadata\$TxfLogh... 2/6/2007 9:1... 100 bytes Visible in directory index, but not ...
@ C:A$Extend\$RmMetadata\$TxfLogh... 6/27/2007 4.... E4.00KE Visible in directory index, but nat ...
@ C:\$Extend $RmMetadata\$TxfLogh... 6/18/2007 3.... 10.00MB Visible in directory index, but not ...
@ C:\$Extend"$RmMetadata\$TxfLogh... 6/27/2007 4.... 10.00MB Visible in directory index, but not ...
@] C:\ProgramD ata\Microsoft\Searchh... 6/27/2007 4.... 2400 KB Hidden from Windows API.

@ C:\ProgramD ata\Microsoft\Searchh... 6/27/2007 4:... 400KB Hidden from Windows API.
@ C:\ProgramD ata\Microsoft\Searchh... 6/27/2007 4.... 64.00KB Hidden from Windows API.
@ C:\ProgramD ata\Microsoft\Searchh... 6/27/2007 4:... E64.00KB Hidden from Windows API.
@ C:\ProgramD ata\Microsoft\Searchh... 6/27/2007 4:... E4.00KB Hidden from Windows API.

N ChU serstpData'\Lo... 9/13/308281... 43 bytes Hidden from Windows &P,

@ C:\wWindows\MinidumpiMini062707-... 6/27/2007 4.... Obytes Visible inWindows AP, directory i...
@ C:\WindowshPrefetch\SMBWURW... B/27/2007 4.... 19.21 KB Hidden from Windows API. |
@] C:\wWindows\System32\LUDHw 6/27/2007 2:... O bytes Hidden from Windows AP,

@ C:\Windows\System32\L'WHR 6/27/2007 4.... Obytes Hidden from Windows &PI.

e

| C:\Windows\System32\wbem\Perfo... 6/27/200712.. 27.92KE Hidden from Windows API.

0 bytes Hidden from Windows API.
@ “$Repair: $Config 2/6/2007 3:1... 8 bytes Hidden from Windows AP
CONETxf 2/6/2007 3:1... 0 bytes Hidden from Windows AP
L 1\$TxfLog 2/6/2007 3:1... 0 bytes Hidden from Windows AP
@ "$TxfLog\$Tops:$T 2/6/2007 3:1... 1.00 MB Hidden from Windows AP,
@ D:A$E xtend\$RmMetadata\$R epair 2/6/2007 3:1... Obytes Visible in directory index, but not ...
L D:A$Estend\$RmMetadatah$ T xf 2/6/2007 3:1... Obytes Visible in directory index, but not ...
) D:A$Extend\$RmMetadatah$TxfLog 2/6/2007 3:1... 0 bytes Visible in directory index, but nat ...
@ D:\$Extend\$RmMetadata\$TxfLog... 2/6/2007 9:1... 0bytes Visible in directory index, but not ...
@ D:\$Extend\$RmMetadata\$TxfLog... 6/27/2007 4.... E4.00KE Visible in directory index, but nat ...
@ D:\$Extend\$RmMetadata\$T=fLog... 6/27/2007 4.... 10.00MB Visible in directory index, but not ...
@ D:\$Extend\$RmMetadata\$T=fLog... 2/6/2007 9.2... 10.00MB Visible in directory index, but not ...
= Obytes Hidden from Windows &PI.
@ “$Repair:$Config 6/28/2006 3:... 8 bytes Hidden from Windows AP,
CONETHf 6/28/2006 3.... Dbytes Hidden from Windows API.
L \$TxfLog 6/28/2006 3:... Obytes Hidden from Windows AP,
@ "$TxfLog\$Tops:$T 9/13/2006 ... 1.00 MB Hidden from ‘Windows AP,
@ E:\$Extend $RmMetadata\$Repair 6/28/2006 3:... 0bytes Visible in directory index, but not ...
LI EASE stend\$Rmietadatah $ T xf 6/28/2006 3:... Obytes Visible in directory index, but not ...
I E:ASExtend\$Rmietadatat\$Txflog 6/28/2006 3:... Obytes Visible in directory index, but not ...
@] E:\$Extend $RmMetadata\$TxfLogh... 9/13/2006 6.... Obytes Visible in directory index, but not ...
@ E:\$E stend\$Rmietadatah$TxfLogh... 6/27/2007 4.... E4.00KB Visible in directory index, but nat ...

= EASEstend\ERmMetadata\ETxfloah. .. 6/27/2007 4:... 10.00 MB Visible in directory index. but nat ...

This screenshot shows a GMER scan reporting a huge list of system
modifications entirely caused by either the AVAST anti-virus package installed or
GMER itself. The GMER executable in this case is named yohOwrli.exe.

AVAST has not only hooked IAT and SSDT, but also has created filtered

device drivers for the network card, hard drive, and CDROM.

Rootkit/Malware] 33]

Type l Name | Value

SSDT \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwFreeVitualMemory [0xF7143B
SSDT \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/AVAST Software) ZwOpenKey [0sF714BB2E)
SSDT \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwDpenProcess [0xF714B262)
SSDT \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwDpenThread [0=F714B2C8]
SSDT \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/AVAST Software) ZwProtectVirtualMemory [0xF714
SSDT \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwluenWalueKey [0:F714B372
SSDT \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwRenameKey [0xF714BE26)
SSDT \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/AVAST Software) ZwRestoreKey [0xF714B3930]
SSDT \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/AVAST Software) ZwSetValueKey [0:F714BAB4]
Code \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) ZwCreateProcessEx [0xF71588D
Code \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/8VAST Software) ZwCreateSection [0xF7158702]
Code \SystemRoothSystem324DrivershaswSP.SYS [avast! self protection module/AVAST Software) ZwlLoadDriver [0xF715883C)
Code \SystemRoot\System32\Drivers\aswSP.SYS [avast! self protection module/AVAST Software) NtCreateSection

text ntoskrnl.exel_abnormal_termination + 313 804E2FE4 1 Byte [72]

text C:\Program Files\&WAST Softwarehbvast\bvastSve.exe[596] kemel32. dllS etUnhandledE xceptionFilter 7C810386 4 Bytes [C2, 04,00, £
text C:\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336] ntdll.dilLdiLoadDIl 7CI161CA 5 Bytes JMP 001500
text C:A\Documents and Settingsiuser\DesktopiyohQwrli.exe[1336] ntdll.dilLdiUnloadDIl 7C91718B 5 Bytes JMP 0015001
text C:\Documents and Settingshuser\DesktophyohOwrli.exe[1336] ADVAPI 32 dllS etServiceDbjectS ecurity 77E3BBE1 5 Bytes JMP 003C01
text C:\Documents and Settingshuser\DesktophyohOwili.exe[1336] ADVAPI32.dllChangeServiceConfigh 77E36CCY 5 Bytes JMP 003C00
text C:\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336) ADVAPI32.dil ChangeS erviceConfigw/ 77E36EET 5 Bytes JMP 003CO1
text C:\Documents and Settingsiuser\DesktopyohOwirli.exe[1336] ADVAPI32.dIlChangeS erviceConfig2a, 77E3EFE1 5 Bytes JMP 003C01!
text C:\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336) ADVAPI32.dIlChangeServiceConfigw 77E36FES 5 Bytes JMP 003CO1
text C:A\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336) ADVAPI32.dil CreateServiced 77E37071 5 Bytes JMP DD3CO0:
text C:A\Documents and Settingsiuser\DesktopyohOwrli.exe[1336] ADVAPI32.dIl CreateS ervice'w 77E37209 5 Bytes JMP 003C00I
text C:\Documents and Settingsiuser\DesktoptyohOwirli.exe[1336] ADVAPI32.dilDeleteService 77E37311 5 Bytes JMP 003C00
text C:\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336] USER32.dlIS etwinE ventHook 77DEE3D3 5 Bytes JMP 003D0(
text C:A\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336]) USER32. dllUnhook\WinE vent 77D6ES44 5 Bytes JMP 003D0OC
text C:\Documents and Settingshuser\D esktophyohOwrli.exe[1336] USER32.dllSetwindowsH ook E s/ 77DBEE21 5 Bytes JMP 003D0C
text C:\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336]) USER32. dllUnhook\WindowsHookE 77DEF29F 5 Bytes JMP 003D01
text C:A\Documents and Settingsiuser\DesktopiyohOwrli.exe[1336] USER32.dllS etwindowsHook E xé, 77D702B2 5 Bytes JMP 003D0OC
15T CAWINDOWShsystem32hservices.exe[404] @ C:AWINDOWShsystem32\services.exe [ADVAPI32.dlICreateP... 007D0002

1AT CAWINDOWS \system32\services. exe[404] @ C:AWINDOWShsystem32\services.exe [KERNEL32.dIlCreate... 00700000

Device \FileSystem\Ntfs \Nifs aswSP.SYS [avast! self protectio
Device \FileSystem\F astfat \FatCdrom aswSP.5YS [avast! self protectio
AttachedDevice \Driver\Tcpip \Device\lp aswTdi.SYS (avast! TDI Filter Dri
AttachedDevice \Driver\Tcpip \Device\Tcp aswTdi.SYS (avast! TDI Filter Dri
AttachedDevice \Driver\T cpip \Device\Udp aswTdi.SYS [avast! TDI Filter Dri
AttachedDevice \Driver\Tcpip \Device‘\Rawlp aswTdi.SYS [avast! TDI Filter Dri
Device \FileSystem\Fastfat \Fat aswSP.SYS [avast! self protectio
AttachedDevice \FileSystem\Fastfat \Fat flttgr.sys (Microsoft Filesystem Fi
<

This screenshot shows Icesword reporting an apparently alarming finding that
Unknown executable has hooked several important SSDT entries including

NtDeleteKey and NtDeleteValueKey. These hooks were created by the Avira anti-
virus software which then obfuscated the hook, probably to prevent malware from

interfering but making it all the more suspicious looking.

oy
Index l Current Addr I KModule | Original Addr | Name

‘0x34 0xB0659767 l’% \WINDOWS\system32\ntoskrnl.exe 0x80659767 MtDebugContint
0x3B 0xB80565FEL \WINDOWS\system32\ntoskrnl.exe 0x80565FE1L MtDelayExecutic
‘0x3C 0x805796B4 \WINDOWS\system32\ntoskrnl.exe 0x80579664 MtDeleteAtom
0x3D 0x80647547 \WINDOWS\system32intoskrnl.exe 0x80647547 NtDeleteBoaotEn
‘Ox3E 0xB0SDBCF7 \WINDOWSsystem32intoskrnl.exe 0x305SDaCF7 NtDeleteFile
‘ Ox3F 0xF8B97123 Unknown 0x8059D6ED MNtDeleteKey
‘0x40 0xBO0638DAS \WINDOWSsystem32intoskrnl.exe 0x30633DAS NtDeleteObject:
‘ Ox41 0xF8B9712D Unknown 0x80597430 MtDeleteValuek:
‘0x42 0x8057FBDO \WINDOWS\system32\ntoskrnl.exe 0x8057FBDO MtDeviceloCont
043 0x805C10E1 \WINDOWS\system32\ntoskrnl.exe 0x805C10E1 MtDisplayString
‘ Ox44 0xB805743BE \WINDOWS\system32\ntoskrnl.exe 0x805743BE MtDuplicateObje
‘0x45 0xB0S7D3F7 \WINDOWS\system32intoskrnl.exe 0x8057D3F7 MtDuplicateToke
‘0x46 0xB064755B \WINDOWSsystem32intoskrnl.exe 0x3064755B MEtEnumerateBo
‘0x47 0OxBOSEF76A \WINDOWSsystem32intoskrnl.exe 0x8056F764 MEEnumerateKe
‘ 0x48 0x80647533 \WINDOWS\system32\ntoskrnl.exe 0x80647533 MtEnumerateSy:
‘ 0x49 0x80S801FE \WINDOWS\system32\ntoskrnl.exe 0x805801FE MtEnumerateyal
‘Ox4h 0xB0624448 \WINDOWS\system32\ntoskrnl.exe 0x80624448 MtExtendSection
‘0x4B 0xB0SB2D2D \WINDOWS\system32\ntoskrnl.exe 0x805B2D2D NEFilterToken
‘0x4C 0x80598095 \WINDOWSsystem32intoskrnl.exe 0x30593095 MEFindAtom
‘0x4D 0xB0S797B4 \WINDOWSsystem32intoskrnl.exe 0x305797B4 MtFlushBuffersF
* Ox4E 0x8057694B \WINDOWS\system32\ntoskrnl.exe 0x805769AB

MEFlushInstructi

This scan log shows a live TDL4 infection. Note the characteristic hidden file
system. Another giveaway is that firefox.exe has hooked ntdll.dll. There is no
reason for Firefox to have any hooks at all, so this is an indication hostile code has
been injected into the Firefox process space. There are also a number of benign
Symantec software hooks in place.

GMER 1.0.15.15570 - http://www.gmer.net

Rootkit scan 2011-03-21 22:34:17

Windows 5.1.2600 Service Pack 3 HarddiskG\DRO -> \Device\Ide\IdePortd WDC_WD3200BB-22KEAG rev.08.05]08
Running: rpltlsur.exe; Driver: C:\DOCUME~I\Owner\LOCALS~1\Temp\pxtdrpob.sys

---- System - GMER 1.6.15 ----

SSDT 8A272(B8 ZwConnectPort
SSDT \??\C:\Program Files\Symantec\SYMEVENT.SYS (Symantec Event Library/Symantec Corporation) ZwDeleteValueKey [0xA3630350
SSOT \?7\C:\Program Files\Symantec\SYMEVENT.SYS (Symantec Event Library/Symantec Corporation) ZwSetValueKey [0xA3630580]

---- User code sections - GMER 1.0.15 ----

.text C:\WINDOWS\System32\svchost.exe[968] ntdll.dll!NtProtectVirtualMemory 7C90DGEE 5 Bytes JMP GOFS000A

.text C:\WINDOWS\System32\svchost.exe[968] ntdll.dLlL!NtWriteVirtualMemory 7C90DFAE S5 Bytes JMP GOF9000A

.text C:\WINDOWS\System32\svchost.exe[968] ntdll.dl1l!KiUserExceptionDispatcher 7C90E47C 5 Bytes IMP GOF7000C

.text C:\WINDOWS\System32\svchost.exe[968] USER32.dl1!GetCursorPos TE42974E 5 Bytes JMNP 03050004

.text C:\WINDOWS\System32\svchost.exe[968] USER32.dL1l!WindowFromPoint 7E429766 S Bytes IMP 03060002

.text C:\WINDOWS\System32\svchost.exe[968] USER32.dL1!GetForegroundiindow 7E429823 5 Bytes JMP 03260004

.text C:\WINDOWS\System32\svchost.exe[968] ole32.dl1l!CoCreatelnstance 774FF1AC 5 Bytes JMP 01030007

.text C:\Program Files\Mozilla Firefox\firefox.exe[3668] ntdll.dLL!NtProtectVirtualMemory 7C90DGEE 5 Bytes JMP 01320004
.text C:\Program Files\Mozilla Firefox\firefox.exe[3668] ntdll.dLL!NtWriteVirtualMemory 7C90DFAE 5 Bytes JMP 0183000A
.text C:\Program Files\Mozilla Firefox\firefox.exe[3668] ntdll.dll!KiUserExceptionDispatcher 7C90E47C 5 Bytes JMP 0167000C
.text C:\WINDOWS\Explorer.EXE[3896] ntdll.dLL!NtProtectVirtualMemory 7C90D6EE 5 Bytes JMP 01530002

.text C:\WINDOWS\Explorer.EXE[3896] ntdlLl.dLL!NtWriteVirtualMemory 7C90DFAE S Bytes IMP 01540004

.text C:\WINDOWS\Explorer.EXE[3896] ntdll.dl1l!KiUserExceptionDispatcher 7C90E47C 5 Bytes JMP 0152000C

---- Devices - GMER 1.0.15 ----

AttachedDevice \FileSystem\Ntfs \Ntfs SYMEVENT.SYS (Symantec Event Library/Symantec Corporation)
AttachedDevice \Driver\Tcpip \Device\Ip SYMTDI.SYS (Network Dispatch Driver/Symantec Corporation)
AttachedDevice \Driver\Tcpip \Device\Tcp SYMTDI.SYS (Network Dispatch Driver/Symantec Corporation)

Device \Driver\atapl -> DriverStartlo \Device\Ide\IdeDevicePIT1LG-17 8A78127F
Device \Driver\atapli -> DriverStartlo \Device\Ide\IdePortd 8A78127F

Device \Driver\atapl -> DriverStartlo \Device\Ide\IdePortl 8A78127F

Device \Driver\atapi -> DriverStartlo \Device\Ide\IdeDevicePITOLO-f 8A78127F

AttachedDevice \Driver\Tcpip \Device\Udp SYMTDI.SYS (Network Dispatch Driver/Symantec Corporation)
AttachedDevice \Driver\Tcpip \Device\RawIp SYMTDI.SYS (Network Dispatch Driver/Symantec Corporation)

Device \Device\Ide\IdeDevicePOTOLG-3 -> \?7\IDE£D1skWDC_WD3200BB-22KEAQ 08.0510825860ba54980£0. 0. 62{53

---- Disk sectors - GMER 1.0.15 ----

Disk \Device\HarddiskG\DRO TDL4@MBR code has been found <-- ROOTKIT !!!
Disk \Device\HarddiskG\DRO sector 00: rootkit-like behavior

---- EOF - GMER 1.0.15 ----

Eliminating false positives

After having examined all the hooks present in the OS, the investigator
should try to eliminate any false positives by examining all the software loaded on
the system to determine whether any legitimate applications may have placed the
hooks. In some cases it may be possible to simply disable the software being tested
temporarily and run another scan. In other cases it will be required to completely
uninstall the software to remove all of its hooks. This process should be completed
methodically and the system rescanned after each change to see which hooks, if
any, disappear. Ideally, a scan of the system in a known clean state would have
been done to allow a comparison to be made.

Once all legitimate software which may have hooked the OS has been
disabled or removed, the remaining hooks can be assumed to either be part of the
OS itself or a rootkit. Research into the OS design will tell whether it has placed its
own hooks or not. These Microsoft dlls are known to hook other dlls as part of their
normal function: setupapi.dll, mswsock.dll, sfc_os.dll, adsldpc.dll, advapi32.dll,
secur32.dll, ws2_32.dll, iphlpapi.dll, ntdll.dll, kernel32.dll, user32.dll, gdi32.dll.

Inline code modifications of kernel files are generally extremely suspicious,
however, Microsoft has released a set of APIs called "detours" for inline code
modifications for use in hot patching live systems without needing to reboot. The
changes made by applications using these APIs would show up as hooks in a rootkit
scanner. Properly implemented these types of hooks should be temporary and rare,
however there is no way to be completely certain whether any given inline kernel
modification is malicious or not without examining the memory location referenced
by the hook. If you have a tool to enumerate dlls called by processes, such as
Process Explorer, you can check to see if detoured.dll is listed. If so, this is generally
a sign that the Detours API is in use and has hooked the process.

Linux and MacOS also use what'’s called runtime patching or runtime memory
barrier patching which replaces instructions in the .text section of the kernel.
Generally this is done to optimize the kernel for the specific instruction set of the
CPU without having to compile and release a binary for every type of CPU, though
sometimes it is done to apply kernel patches to a system that cannot be rebooted.
All runtime changes should be documented in the .altinstructions or .altstr_replace
section of the kernel. Any changes not documented there should be considered
malicious, but even documented changes may show up on a running kernel
modification scan from a tool like elfstat. And ultimately there is nothing stopping
rootkit authors from properly documenting modifications to make the rootkit appear
legitimate.

Examine automatic program execution entries

Rootkits, like any other complex software are generally composed of several
interrelated files, which may include device drivers, executables, and dependent
dlls. Often there will be dozens of such files, each of which has a specialized
function, stored in different folders all over the hard drive. The rootkit needs to get
all of them into memory to function properly. This job falls to loader files, which only
serve to load the other rootkit components into memory. There may be a half dozen
or more distinct loaders, each capable of kickstarting the rootkit in case the others
are deleted.

Rootkit authors tend to favor the "belt and suspenders" approach to making
sure their rootkit is loaded on boot. Often, despite having loaders specified in:

HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Windows\AppInit_DLLs
HKU\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\

all of which are stealthy places to hide, the rootkit will still have loaders in all the
obvious places you would think of to look for malware, like:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run
and user Startup folders, found at

C:\Documents and Settings\%username%\Start Menu\Programs\Startup for XP or
C:\Users\%username%)\Start Menu\Programs\Startup for Vista and later.

Checking common locations for automatic program execution is a good step
to take in any investigation, even where something as stealthy as a rootkit is
concerned.

Remember to check System Services, Task Scheduler, and for Linux, init.d,
rcX.d, .bash_profile, .bashrc, /etc/profile, cron and at jobs also. The presence of a
file with a name consisting of a series of random letters and numbers in any of these
places is a dead giveaway. Checking obvious locations for a loader is often a quick
and easy way to unmask the presence of a rootkit which may have other more
stealthy components elsewhere.

Another quick check which surprisingly often yields results is to check the
system directories for hidden files, ie

C:\Windows\system32

Hidden files generally show up as "grayed out". Despite being buried in a
huge pile of legitimate files which would otherwise make finding any file which didn't
belong difficult, rootkits quite often mark their files as hidden as "extra protection",
which only serves to make them stand out to an investigator. Very few real OS files
are marked hidden in the filesystem, so it is fairly easy to check online whether any
hidden files that turn up are legitimate or not. In Linux OS check /smod and
/proc/modules for unknown or suspicious kernel modules.

Memory Scan

Even though there are methods for a rootkit to hide its code in memory, not
all rootkits use these techniques, so a good AV or AR program which includes
memory scanning is a good step to take, as is using Task Manager or ps to look at
running processes for anything that looks suspicious. Examples of suspicious
processes would include unusual filenames or applications which should not be
running or which should have a visible window but do not. Many rootkits hook the
default browser and run it in a hidden context, so if the web browser is shown as
running when it is not visible as such, that can be a sign of infection. Most linux
distributions using kernel 2.6 or newer enable CONFIG_STRICT_DEVMEM which
disables the ability to read physical RAM, which may be required for some rootkit
scanning tools.

Open Ports

It is also a good idea to check all the open TCP and UDP ports, using a tool
like TCPView or netstat. Even though some rootkits hide network connections, not
all do, so it is worthwhile to check. The computer being tested will need to have
internet access for any attempts by the rootkit to "phone home" to show up. Close
all other programs which may have an active internet connection to more easily spot
unauthorized connections. Then do a reverse DNS lookup on any IPs which show up
to determine if there is a legitimate reason for that connection.

For rootkits which use hidden connections, having another computer sniffing
network traffic using Wireshark and a hub or network shunt can be a useful way to
expose a rootkit's communications to its remote command and control server.
Firewall and proxy logs are another good place to look. Rootkits may connect back
on any port or protocol. What's more important is the connection end point. A lack
of communication should not be construed as no infection, since some rootkits only
phone home very infrequently, but unexpected connections are a good indicator of
infection.

Taking Notes

Keep meticulous notes of all information uncovered during an investigation.
Rootkits are known to behave erratically. A registry entry which points to one of the
rootkit files may disappear the next time the registry is examined. Open network
connections may be brief and infrequent. Take screenshots where possible and in
every case make note of file names and locations, memory offsets, registry entries,
IP addresses, and disk sector addresses.

Making A Diagnosis

After all the above steps have been done, make copies of any files which are
suspicious and upload them to a multi-AV site such as virustotal.com or
novirusthanks.org. Most rootkits use encryption or other obfuscation techniques and
are only likely to have been previously identified by a handful of AV vendors.
Running a scan using a large number of AV signature databases is more likely to
result in a positive match should any of the files actually belong to a rootkit. In the
absence of a direct match in one of the AV databases, a malware sandbox such as
anubis.iseclab.org or camas.comodo.com may be useful for automated heuristic
behavior analysis and comparison to known rootkit profiles. This will often catch
variants of popular rootkits that have simply had minor modifications to evade AV.

However, many rootkits monitor the execution environment and will refuse to
run in a virtualized or sandboxed environment. In this case the investigator is forced
to make an independent evaluation of the heuristic behavior of the computer as to
whether it is consistent with an infection. There is no sure standard, but most
rootkit infections will exhibit multiple signs, such as hooks, hidden processes, files,
and network connections.

Other Traces Of Malicious Activity

A rootkit compromised machine may function as a staging area for the rootkit
user to launch additional attacks on other machines on the network. If this is the
case, evidence of this activity may be found on the computer hard drive which can
point to the underlying rootkit. Tools for malicious activity can be considered a sign
of an infection.

Hackers often code attacks in Perl, Ruby, and Python scripts, so support
libraries for these programming languages may be an indicator of malicious activity.
Network scanners such as Nmap, sniffers such as Wireshark, password crackers such
as John the Ripper, and exploit frameworks such as Metaplsoit may also be indicators
of malicious activity. Whether they have a legitimate reason to be on the machine
will depend on its regular use and role in the network. Logs of other machines on
the network, including IDS, which indicate a pattern of malicious activity originating
from the suspect machine may also be a sign of infection.

Advanced Rootkit Detection

Even though hypervisor rootkits, memory only rootkits, and BIOS based
firmware rootkits have not been found in the wild so far, they cannot be ruled out,
particularly as nation-state actors become involved in the development of targeted
malware. The existence of these kinds of advanced rootkits adds a greater element
of uncertainty to rootkit detection.

While it is possible to use commands like dmesg to tell if virtualization
components are loaded in the OS, along with other techniques such as examining the
IDT (Interrupt Descriptor Table), if the machine is already known to be running a
virtual environment as part of its normal function this gives no information whether
there is any additional hypervisor other than the expected one.

Forensic analysis of the hard drive on a known clean system may show signs
of a hypervisor rootkit which resides on the hard disk but not one which is only
memory resident or any rootkit in hardware flash memory. Hardware based rootkit
scanners, may be able to unmask these advanced types of rootkits, but even that
may not be able to catch all of them or may itself be vulnerable to compromise. Due
to the highly sophisticated nature of the threats, 100% certainty that a rootkit is not
present on a system is not possible. Even a brand new computer never before used
can be compromised as there have been instances of malware infected software
provided direct from the manufacturer.

Rootkit Removal

The most reliable and efficient method of removing a rootkit is to low level
format the infected hard drive using manufacturer's software or firmware for that
purpose and reload the OS from known good backups. In cases where computer
firmware is suspected of compromise, the additional step of re-flashing all BIOS
firmware using firmware cryptographically signed by the manufacturer may be
necessary. For real certainty, every writable space, including all drives and
firmware, would need to be flushed.

If this is impractical, steps may be taken to attempt to manually remove the
rootkit piecemeal, however success cannot be guaranteed. The key to a manual
rootkit removal is to have accurately and thoroughly mapped out all its functions,
hooks, and files. Often a rootkit will be programmed to check whether its hooks and
files are intact and replace them if they are modified or deleted. In order to fully
remove a rootkit, all its files, hooks, and registry entries must be removed while the
computer is offline to prevent the rootkit from detecting the changes and undoing
them.

Additionally, any device drivers and kernel files which have been modified by
the rootkit will need to be restored from backup as they are critical for the operation
of the OS and cannot be simply deleted. It will be crucial when restoring damaged
drivers and kernel files to ensure they are the same version as the original. If known
good backups are not available, OS files may be restored from the original
installation source.

Before attempting a removal, it is advisable to observe the rootkit in
operation on a clone drive using advanced debugging tools, such as SoftICE and
Ollydbg, which monitors heap and stack, traces registers, recognizes procedures,
loops, API calls, switches, tables, constants and strings. This is to make sure that all
hidden components are uncovered to the fullest extent possible. However, many
rootkits watch memory space for known debuggers and will attempt to confuse the
process by shutting down, falsifying data, or terminating the debugger.

It is important to gather as much information as possible before attempting
removal because if even one component is missed, the rootkit may still be operable
and either recreate deleted components or download them fresh from its control
server. It may be necessary to fully reverse engineer the rootkit to determine how
to completely remove it.

In cases of an MBR infection, the MBR will need to be overwritten with a clean
copy using the fdisk utility, fixmb or for Linux grub-install. In cases of slack space
infection, the slack space can be overwritten without damaging the files on disk.

This is done with a specialized utility like Eraser or bmap. In fact, if the whole hard
drive is not going to be wiped, it is probably a good idea to at least wipe slack space
and free space, even if there is no concrete indication the rootkit is storing files
there, simply because it doesn't harm the filesystem and there just might be some
backup copy of the rootkit there waiting to spring back into action. For cases of ADS
infection, a different set of specialized tools will be required to clean them. Some of
these tools include: ADSSpy, Streams, and StreamArmor.

If the rootkit has been positively identified by an AV vendor, it may be
possible to use that vendor's AV software to remove some or all of the rootkit files
automatically. For this reason multi-AV scan sites will be valuable in identifying
which AV vendor has detection signatures for the rootkit. In addition, there may be
information online or available directly from the AV vendor which more fully
describes the operation of the rootkit and exact removal instructions. Even if no AV
vendor has sighatures for the rootkit, it may still be useful to run an AV scan which
includes good heuristic detection, to complement other efforts and make sure
nothing is missed.

Last Updated: February 7th, 2026

- Upcoming SANS Training

Click Herefor afull list of all Upcoming SANS Events by L ocation

SANS Secure Caribbean 2026 Kingston, JM Feb 16, 2026 - Feb 21, 2026 Live Event
SANS Surge 2026 LaJolla, CAUS Feb 23, 2026 - Feb 28, 2026 Live Event
SANS Dublin February 2026 Dublin, IE Feb 23, 2026 - Feb 28, 2026 Live Event
SANS Secure Japan 2026 Tokyo, JP Mar 02, 2026 - Mar 14, 2026 Live Event
SANS London March 2026 London, GB Mar 02, 2026 - Mar 07, 2026 Live Event
SANS DC Metro March 2026 Arlington, VAUS Mar 02, 2026 - Mar 07, 2026 Live Event
SANS Secure Singapor e 2026 Singapore, SG Mar 02, 2026 - Mar 14, 2026 Live Event
SANS Paris March 2026 Paris, FR Mar 09, 2026 - Mar 14, 2026 Live Event
SANS Open-Source I ntelligence Summit 2026 Arlington, VAUS Mar 16, 2026 - Mar 22, 2026 Live Event
SANS Thailand March 2026 Bangkok, TH Mar 16, 2026 - Mar 21, 2026 Live Event
SANS Amsterdam M arch 2026 Amsterdam, NL Mar 16, 2026 - Mar 21, 2026 Live Event
SANS Melbourne March 2026 Melbourne, VIC, AU Mar 16, 2026 - Mar 21, 2026 Live Event
SANS Cyber security L eader ship Summit & Training 2026 Arlington, VAUS Mar 17, 2026 - Mar 22, 2026 Live Event
SANS 2026 Orlando, FLUS Mar 29, 2026 - Apr 03, 2026 Live Event
SANS London April 2026 London, GB Apr 13, 2026 - Apr 18, 2026 Live Event
SANS RomeApril 2026 Rome, IT Apr 13, 2026 - Apr 18, 2026 Live Event
SANS SecureAustralia 2026 Canberra, ACT, AU Apr 13, 2026 - Apr 18, 2026 Live Event
SANS Rocky Mountain 2026 Denver, COUS Apr 20, 2026 - Apr 25, 2026 Live Event
SANS SEC535 at Al Cybersecurity Summit & Training 2026 Arlington, VAUS Apr 20, 2026 - Apr 27, 2026 Live Event
SANSAI Cybersecurity Summit & Training 2026 Arlington, VAUS Apr 20, 2026 - Apr 27, 2026 Live Event
SANS Amsterdam April 2026 Amsterdam, NL Apr 20, 2026 - Apr 25, 2026 Live Event
SANS ICS Munich 2026 Munich, DE Apr 20, 2026 - Apr 25, 2026 Live Event
SANS Doha April 2026 Doha, QA Apr 26, 2026 - Apr 30, 2026 Live Event
SANS Cyber Incident Management 2026 OnlineAU Feb 09, 2026 - Feb 13, 2026 Live Event
SANS OnDemand Books & MP3sOnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=90985
http://www.sans.org/secue-caribbean-2026
http://www.sans.org/link.php?id=88845
http://www.sans.org/surge-2026
http://www.sans.org/link.php?id=89785
http://www.sans.org/dublin-february-2026
http://www.sans.org/link.php?id=89875
http://www.sans.org/secure-japan-2026
http://www.sans.org/link.php?id=88695
http://www.sans.org/london-march-2026
http://www.sans.org/link.php?id=89565
http://www.sans.org/dc-metro-march-2026
http://www.sans.org/link.php?id=90855
http://www.sans.org/secure-singapore-2026
http://www.sans.org/link.php?id=88685
http://www.sans.org/paris-march-2026
http://www.sans.org/link.php?id=89895
http://www.sans.org/sans-osint-summit-2026
http://www.sans.org/link.php?id=89915
http://www.sans.org/thailand-march-2026
http://www.sans.org/link.php?id=88240
http://www.sans.org/amsterdam-march-2026
http://www.sans.org/link.php?id=89795
http://www.sans.org/melbourne-2026
http://www.sans.org/link.php?id=90250
http://www.sans.org/sans-cybersecurity-leadership-summit-2026
http://www.sans.org/link.php?id=88640
http://www.sans.org/sans-2026
http://www.sans.org/link.php?id=88175
http://www.sans.org/london-april-2026
http://www.sans.org/link.php?id=88765
http://www.sans.org/rome-april-2026
http://www.sans.org/link.php?id=89790
http://www.sans.org/secure-australia-2026
http://www.sans.org/link.php?id=90115
http://www.sans.org/Live Event
http://www.sans.org/link.php?id=90965
http://www.sans.org/sec535-ai-summit-2026
http://www.sans.org/link.php?id=90275
http://www.sans.org/ai-summit-2026
http://www.sans.org/link.php?id=88810
http://www.sans.org/amsterdam-april-2026
http://www.sans.org/link.php?id=88830
http://www.sans.org/ics-munich-2026
http://www.sans.org/link.php?id=87980
http://www.sans.org/doha-april-2026
http://www.sans.org/link.php?id=91170
http://www.sans.org/cyber-incident-management-2026
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

