
Interested in learning more
about web application
security?

SANS Institute
Security Consensus Operational Readiness Evaluation
This checklist is from the SCORE Checklist Project. Reposting is not permited without express, written permission.

Web Application Security Checklist

Copyright SANS Institute
Author Retains Full Rights

https://www.sans.org/score/
https://www.sans.org/curricula/secure-software-development
https://www.sans.org/score/
https://www.sans.org/score/
https://www.sans.org/score/webappschecklist.php
https://www.sans.org/

Page 1 of 8

Web Application Checklist
Prepared by Krishni Naidu

References:
Web application and database security, Darrel E. Landrum, April 2001
Java’s evolving security model: beyond the sandbox for better assurance or a
murkier brew? Matthew J. Herholtz, March 2001
Basics of CGI security: Common Gateway Interface, CGI, at a glance, Jeffrey
McKay, April 2001
CERT: Understanding malicious content mitigation for web developers
Secure a web application, Java style, Michael Cymerman
CERT: Malicious HTML tags embedded in client web requests
Best practices for web development, Razvan Peteanu
Security Code guidelines (http://java.sun.com/security/seccodeguide.html)
Web application security considerations

(http://www.4.ibm.com/software/webservers/appserver/doc/v35)
Perl Security: (http://www.perl.com/pub/doc/manual/html/pod/perlsec.html)
Extensible Security architecture for Java, Dan Wallach, Dirk Balfanz, Drew Dean,
Edward Felten

Introduction:
This checklist is to be used to audit a web application.
It is essential that the web application not be evaluated on its own in an e-commerce
implementation. The other elements like the operating system, IIS/Apache, the
database, router configuration and firewall configuration needs to be evaluated to
ensure that appropriate steps have been taken to address the risks posed by
numerous vulnerabilities that may be present.

The procedural elements must also not be forgotten e.g. physical security and the
enforcement of the security policy elements such as development standards.

Prior to using this checklist the following should be considered:

• Privacy: It is not possible to highlight all the considerations to be taken into
account when taking into account privacy regulations in the application due to
the numerous country laws that would have to be considered. It is thus the
responsibility of the auditor to identify the relevant law that is applicable in the
specific country where the review is occurring and ensure that the application
takes this into account.

• Web application as part of ERP package: In some instances the web
application may be an add on module of an ERP e.g. SAP, Navision, etc. In
such instances it may be important to ascertain the security implications with
the requisite vendor as well as with the in house development team to
ascertain the security implications of the modification. The web application
authentication may be a part of the ERP thus it is important to perform the
review together with the security review of the ERP. In such instances it is
also important to ensure that no web user has ERP administrator access e.g.
SAP ALL access in a SAP environment. ERP security reviews are a
comprehensive subject on their own and thus no attempt has been made in
this checklist to audit the web application part of a ERP. This checklist with
some modification can be used in conjunction with a security review of the
ERP.

Page 2 of 8

• Database and other elements security; This checklist does not include
database security or security considerations for any of the other elements like
the operating system as these are exhaustive topics that need their own
checklists.

• Programming languages: It is beyond the scope of this paper to provide a
comprehensive listing of all security considerations for all languages used to
create web applications. A listing of security considerations for languages that
are commonly used is however provided like Java, Perl and CGI. Other
languages not catered for are XML, ActiveX, etc.

• Securing the program/web application: This checklist does not address the
aspect of securing the program files at the operating system folder/directory
level. This is an important element to ensure that only the authorised
developer has access to this directory in the development environment. When
the program is moved to the production environment, there should be
adequate controls such as movement by a change control group and the
program files must again be secured such that they may not be modified by
unauthorised persons.

Prior to reviewing the security of the application it is important to ascertain what the
application will be doing e.g. will the application be used to provide clients access to
account information or will the application be used to sell consumer goods via the
Internet.

Checklist:

No. Control Item
1. Requirements phase

Ensure that the user requirements specifications include the following items:
• Whether the assets have been identified
• How the application will be used
• Identifying the users, their roles and rights – authorization and

authentication
• Legal and business issues – support for non-repudiation, audit trail,

digital signatures, strong encryption
2. Java

Ensure that the Java application is sandboxed.
Ensure that the jave.security, java.security.acl and java.security.interfaces
packages are run.
Run the application with the following:

• java –Djava.security.debug=help
This will output the results of Checkpermission calls, loading and granting
policies, dumps of relevant domains and other information. Review the output
to ensure that it is appropriate in terms of security.
Ensure that the SecureRandom class is used to create random numbers.
Ascertain if form based authentication or basic authentication is being used. If it
is form based authentication, ensure that sensitive forms are protected via
userids and passwords.
Since userids and passwords are passed in the clear ensure that SSL is used.
Ensure that the code includes a line that does not permit access if the
authentication fails and returns the user to the login form again e.g.:

// if the user is not authenticated
if (!isAuthenticated .booleanValue())
{

Page 3 of 8

 // process the unathenticated request
unauthenticatedUser (response, requested Page) ;
}

Ensure that code exists to store the user authentication information inside a
session variable e.g.

// create a session
session + request.getSession (True);

// convert the Boolean to a Boolean
Boolean booleanIsAuthenticated + new Boolean(isAuthenticated) ;

// store the Boolean value to the session
session.putValue(
 Constants.AUTHENTICATION,
BooleanIsAuthenticated) ;

Ensure that the classes available to the virtual machine are limited. Review the
classpath to ensure that unnecessary entries are removed.
Ensure that the code does not have access to third party tools or extraneous
code.
Review the various sensitive beans to ensure that the EJB’s deployment
descriptor has the following code:

(accessControlEntries
DEFAULT [administrators basicUsers
TheRestrictedMethod [administrators]
) ; end accessControlEntries

This ensures that only the administrators have access to the restricted method.
Review the weblogic.properties file to ensure that only authorised
administrators are listed in the administrators group.
Ensure that the java.security.acl package is used to grant permissions and add
new users.
Review all user permissions using the following:

Boolean isReadFileAuthorized = accessList.checkPermission (*User,
ReadFile) ;

Ensure that user permissions are appropriate e.g. only the designer has access
to the owner object.
Ensure that the security manager has been enabled.
Ensure that non final public static variables a re not used since there is no way
to check whether the code that changes such variables has the appropriate
permissions.
Ensure that the scope of methods and fields are reduced as much as possible.
Ensure that developers have refrained from using public methods/fields.
Ensure that any public method that has access to and/ modifies sensitive
states includes a security check.
Ensure that adequate steps have been taken to prevent against package
insertion e.g.:

• add line to java.security properties file
package.defeinition=Package#1 [, Package#2,….., Package#n]

• Place the package’s class in a sealed JAR file
Ensure that the following line has been added to the java.security properties file
to protect package acesses:

Package.access=Package#1 [,Package#2,…….,Package#n]
Ensure that objects are made immutable.
Ensure that there is no return of a reference to an internal array that contains
sensitive data.

Page 4 of 8

Ensure that user given array of objects is not stored directly.
If serialisation is used ensure the following precautions are taken:

• Ensure that the transient keyword is used for fields that contain
direct handles to system resources and that contain information
relative to an address space.

• Ensure that a class defines its own deserialising method and that
the ObjectInputValidation interface is used to validate invariants.

• If a class defines its own serialising method, ensure that it does not
pass an internal array to an DataInput/DataOutput method that
takes an array.

• Ensure that byte streams are encrypted.
• If untrusted code has a restriction in creating an object, ensure that

the untrusted code has the same restriction when it deserialises the
object.

Ensure that native methods are examined for the following:
• What they return
• What they take as parameters
• Whether they bypass security checks
• Whether they are public or private
• Whether they contain method calls which bypass package

boundaries, thus bypassing package protection
Ensure that sensitive information such as credentials is kept in mutable data
types.
Ensure message digests or digital signatures are used to protect the integrity of
sensitive data.

3. Privileged code
Ensure that privileged code is as short as possible. Privileged code when run
can access any resource within the code that it does not have permissions to
access.
Ensure that tainted variables are not used within the privileged code when used
with public methods. Ensure that private methods are used and can not be
called from outside the class.
Ensure code is wrapped in a privileged block when the code performs tasks
that would not normally be allowed by an applet or untrusted code.

4. Perl
Ensure that the script is run in tainted mode. This is done by using the –T
command line flag.
Run the following script to check whether a variable contains tainted data:

Sub is_tainted {
Return ! eval {

Join (‘ ‘,@_), kill 0;
1;

};
}

Any presence of tainted data anywhere within an expression renders the whole
expression tainted.
If data has to be untainted ensure that the /.+/ command is not used as this
command lets everything through.
Ensure that for “Insecure $ENV{PATH}” messages, the $ENV{‘PATH’} is set to
a known value. Each directory in the path must be only writable to the owner
and the group.
Ensure that the variables such as IFS, CDPATH, ENV and BASH_ENV are
deleted since these are run untainted. The script is as follows:

Delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV

Page 5 of 8

safer
Ensure that file tests for taintedness are performed for user supplied filenames.
Ensure that a child has been forked using the open syntax that connects the
parent and the child via a pipe. The child has less privilege compared to the
parent and thus is safer to use. It is thus safer to open or pipe a file from
setuid/setgid.
Since backticks are also vulnerable to call the shell, ensure that the shell is
never called. The script to ensure that backticks are performed safely are as
follows:

Use English;
Die “Can’t fork: $!” unless defined $pid = open (KID, “- |”);
If ($pid) { #parent

While (<KID>) {
do something

}
close KID;

} else {
my @temp = ($EUID, $EGID);
$EUID = $UID;
$EGID = $GID; # initgroups () also called;
#Make sure privs are really gone
($EUID, $EGID) = @temp
die “Can’t drop privileges”

unless $UID == $EUID && $GID eq $EGID;
$env{PATH} = “/’bin:/usr/bin”;
exec ‘myprog’, ‘arg1’, ‘arg2’

or die “can’t exec myprog: $!”;
}

Ensure that a similar strategy as above is used for glob.
5. Cgi

Ascertain how often CGI hacking tools are run to determine vulnerabilities and
whether there is a process to fix the vulnerabilities identified by the hacking
tools. Tools such as Whisker (Rain Forrest Puppy) or wCGIchk can be used to
ascertain vulnerabilities.
Ensure that there is a process to keep up to date with new
vulnerabilities/patches and updates and fix them as appropriate.
If the CGI programs are used to create or open files, ensure that the following
is observed:

• Error handling code is included to warn if the file isn’t actually a file,
cannot be created or opened, already exists, requires different
permissions, etc.

• Ensure that files are not written to world writeable or world readable
directories.

• Ensure that the files UMASK are explicitly set.
• Ensure that the file permissions are set as restrictively as possible.
• Ensure that the file’s name does not have metacharacters in it. If the

file is created on the fly ensure that there is a screening process to
filter out metacharacters.

• Ensure that scripts not in use are deleted.
• Ensure that CGIWrap is utilized to allow general users access to

CGI scripts and HTML forms without compromising the security of
the web server.

• Ensure that scripts are run using the permission of the user who

Page 6 of 8

owns the script and not the userid of the httpd process.
If CGI scripts are downloaded from the web ensure that the following checks
are made:

• Complexity of the script – more problems if more complex.
• Whether it reads or writes files on the host system. Programs with read

files may violate access restrictions or pass sensitive information to
hackers. Programs that write files may modify or damage documents or
introduce Trojans.

• Interactions with other programs on the system e.g. with sendmail. Is
the interaction secure

• Whether it runs with suid privileges. This should not be permitted.
• Whether the author validates user input from forms. This is an indication

that security is being considered.
• Whether explicit path names are used when invoking external

programs. The PATH environment variable is insecure if used to
resolve partial path names.

If coding in C ensure that the developer has taken into account buffer
overflows.
Ensure that unchecked remote user input is not passed to a shell command.
Risky C commands are the popen(), exec(), and in Perl the system(), exec(),
piped open and eval() function.
Ensure that backtick quotes are avoided.

6. Malicious HTML tags embedded in client web requests
Ensure that there is a process whereby web developers ensure that
dynamically generated pages do not contain undesired tags.
Ensure there is a process for developers to restrict variables to those
characters that are explicitly allowed and to check those variables during the
generation of the output page.
Ensure that the developers follow the two processes above.

7. Malicious content mitigation
Ensure that the character set encoding for each page generated by the web
server is explicitly set.
Ensure that the developers have a defined process to identify special
characters and filter them out. List of special characters are as follows:

• <
• >
• &
• “ “
• “
• space and tab
• new line
• %
• semicolon, parenthesis, curly braces
• !
• ampersand’

Ensure that dynamic output elements are encoded.
Ensure that dynamic content filtering is implemented on the output side.
Ensure that there is a process to carefully examine cookies that are accepted
and that filtering techniques are used to verify that they are not storing
malicious content.
Ensure that encoding is also applied to URL’s and HTML pages.

Page 7 of 8

8. Testing of Application
Ensure that the application is tested using application scanners like AppScan
from Sanctum, Retina from eEye, and Web Inspect from SPI Dynamics.

9. Privacy
Ensure that the application deals with the application and handling of private
data as defined by the country’s specific laws and regulations.

10. Ensure that there is a process whereby application developers are keeping
abreast of new vulnerabilities by for e.g. subscribing to mailing lists like CERT.

11. Documentation
Ensure that the system is adequately documented. The documentation should
include:

• server and application settings
• resource permissions
• what the sensitive resources are
• how to perform operations or changes the right way

12. Anonymous access
Ensure that all pieces of functionality use proper authentication rather than
anonymous authentication.

13. Testing
Ensure at the testing stage there is adequate te sting of the authentication and
ACL’s.

14. Application logins
Ensure that the code is not run using the suid root/administrator account. Also
the application must not be run using the database administrator account e.g.
SQL sa account.

15. GET, POST & Encryption
Ensure that GET is not used to send sensitive data as the information is logged
in clear text even if SSL is used. SSL only encrypts data in transit – not at the
destination point.
If POST is used the HTTP body is not logged. However the POST method still
sends data is clear text, thus encryption is vital.
Ensure that encryption is used for sensitive data at the application level.

16. Incoming data
Ensure that the developer has fully considered the implications of incoming
data in terms of the URL, method, cookie, HTTP Headers and data fields.
Ensure such scenarios have been appropriately tested in terms of the
following:

• if the URL is changed can the client access another users session
Ensure that the application has been tested to ensure that incoming data fields
can not overflow buffers or append to an SQL statement (execute code on the
SQL server).

17. Client keeping important data
Ensure that the application does not rely on the client keeping information such
as :

• Hidden form fields
• Parameters

Ensure that any information, which is capable of being changed by the client, is
stored on the server side.

18. Logs
Ensure that logs are created and that the information provided by the logs are
useful i.e. provide sufficient detail.

Page 8 of 8

19. ASP/JSP
Ensure that sensitive credential information such as username/password
combinations for accessing the following:

• membership directories
• database connection strings

are not hardcoded in the page.
20. Extensions

Ensure that file extensions are not available on the server side. If the hacker
asks for the file specifically instead of the including page, will be served
possible sensitive information.

21. HTML Comments left in production code
Ensure that no sensitive information is included in the HTML comments, which
are embedded in the HTML or client script. E.g.

• Connection string that was once part of a server side script and
commented out. Through editing this can reach the client script and
thus be transmitted to the browser.

22. Error Messages
Ensure that error messages do not reveal sensitive information, which can be
used to facilitate an attack against the organisation. For e.g.:

• physical paths
• platform architecture

Review the error related configuration of the serer and how errors are handled
by the application. Under IIS, ensure that the generic error option is chosen
instead of send detailed ASP error message to client (default).

23. Relationship with QA and code reviews
Ensure that there is close continuous working relationship between QA and the
development team, such that any security related issues discovered by QA are
forwarded timeously to the development team to fix.
Ensure that code reviews are performed and that issues raised during the code
review are adequately fixed.

24. Wizard generated or sample code
Ensure that there is a process to review wizard generated or sample code to
ascertain whether they include hardcoded credentials to access resources e.g.
databases.
Alternatively review wizard generat4ed or sample code to ensure that there is
no hardcoded credentials.

25. C/C++
Since C/C++ does not deal with buffer overflows, the programmer is left to
implement this. Another problem is the format string attacks. Ensure that there
are proper code reviews to identify insecure practices and that the issues
raised have been fixed.
Test for unsafe constructs using tools like L0pht’s SLINT.
Ensure that all input arguments are checked for validity.
Ensure that the system() call, shell(), popen and exec*p is not used.
Ensure that scanf is not used to read anything as its behaviour when given a
string that does not match the format expected is undefined.
Ensure that environment variables are actively checked for validity.
Ensure that all functions are checked for valid returns.
Ensure that binaries are stripped.

26. SSL
Ensure SSL is used to provide encryption for in-transit elements.

Last Updated: February 7th, 2026

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Secure Caribbean 2026 Kingston, JM Feb 16, 2026 - Feb 21, 2026 Live Event

SANS Surge 2026 La Jolla, CAUS Feb 23, 2026 - Feb 28, 2026 Live Event

SANS Dublin February 2026 Dublin, IE Feb 23, 2026 - Feb 28, 2026 Live Event

SANS Secure Japan 2026 Tokyo, JP Mar 02, 2026 - Mar 14, 2026 Live Event

SANS London March 2026 London, GB Mar 02, 2026 - Mar 07, 2026 Live Event

SANS DC Metro March 2026 Arlington, VAUS Mar 02, 2026 - Mar 07, 2026 Live Event

SANS Secure Singapore 2026 Singapore, SG Mar 02, 2026 - Mar 14, 2026 Live Event

SANS Paris March 2026 Paris, FR Mar 09, 2026 - Mar 14, 2026 Live Event

SANS Open-Source Intelligence Summit 2026 Arlington, VAUS Mar 16, 2026 - Mar 22, 2026 Live Event

SANS Thailand March 2026 Bangkok, TH Mar 16, 2026 - Mar 21, 2026 Live Event

SANS Amsterdam March 2026 Amsterdam, NL Mar 16, 2026 - Mar 21, 2026 Live Event

SANS Melbourne March 2026 Melbourne, VIC, AU Mar 16, 2026 - Mar 21, 2026 Live Event

SANS Cybersecurity Leadership Summit & Training 2026 Arlington, VAUS Mar 17, 2026 - Mar 22, 2026 Live Event

SANS 2026 Orlando, FLUS Mar 29, 2026 - Apr 03, 2026 Live Event

SANS London April 2026 London, GB Apr 13, 2026 - Apr 18, 2026 Live Event

SANS Rome April 2026 Rome, IT Apr 13, 2026 - Apr 18, 2026 Live Event

SANS Secure Australia 2026 Canberra, ACT, AU Apr 13, 2026 - Apr 18, 2026 Live Event

SANS Rocky Mountain 2026 Denver, COUS Apr 20, 2026 - Apr 25, 2026 Live Event

SANS SEC535 at AI Cybersecurity Summit & Training 2026 Arlington, VAUS Apr 20, 2026 - Apr 27, 2026 Live Event

SANS AI Cybersecurity Summit & Training 2026 Arlington, VAUS Apr 20, 2026 - Apr 27, 2026 Live Event

SANS Amsterdam April 2026 Amsterdam, NL Apr 20, 2026 - Apr 25, 2026 Live Event

SANS ICS Munich 2026 Munich, DE Apr 20, 2026 - Apr 25, 2026 Live Event

SANS Doha April 2026 Doha, QA Apr 26, 2026 - Apr 30, 2026 Live Event

SANS Cyber Incident Management 2026 OnlineAU Feb 09, 2026 - Feb 13, 2026 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=90985
http://www.sans.org/secue-caribbean-2026
http://www.sans.org/link.php?id=88845
http://www.sans.org/surge-2026
http://www.sans.org/link.php?id=89785
http://www.sans.org/dublin-february-2026
http://www.sans.org/link.php?id=89875
http://www.sans.org/secure-japan-2026
http://www.sans.org/link.php?id=88695
http://www.sans.org/london-march-2026
http://www.sans.org/link.php?id=89565
http://www.sans.org/dc-metro-march-2026
http://www.sans.org/link.php?id=90855
http://www.sans.org/secure-singapore-2026
http://www.sans.org/link.php?id=88685
http://www.sans.org/paris-march-2026
http://www.sans.org/link.php?id=89895
http://www.sans.org/sans-osint-summit-2026
http://www.sans.org/link.php?id=89915
http://www.sans.org/thailand-march-2026
http://www.sans.org/link.php?id=88240
http://www.sans.org/amsterdam-march-2026
http://www.sans.org/link.php?id=89795
http://www.sans.org/melbourne-2026
http://www.sans.org/link.php?id=90250
http://www.sans.org/sans-cybersecurity-leadership-summit-2026
http://www.sans.org/link.php?id=88640
http://www.sans.org/sans-2026
http://www.sans.org/link.php?id=88175
http://www.sans.org/london-april-2026
http://www.sans.org/link.php?id=88765
http://www.sans.org/rome-april-2026
http://www.sans.org/link.php?id=89790
http://www.sans.org/secure-australia-2026
http://www.sans.org/link.php?id=90115
http://www.sans.org/Live Event
http://www.sans.org/link.php?id=90965
http://www.sans.org/sec535-ai-summit-2026
http://www.sans.org/link.php?id=90275
http://www.sans.org/ai-summit-2026
http://www.sans.org/link.php?id=88810
http://www.sans.org/amsterdam-april-2026
http://www.sans.org/link.php?id=88830
http://www.sans.org/ics-munich-2026
http://www.sans.org/link.php?id=87980
http://www.sans.org/doha-april-2026
http://www.sans.org/link.php?id=91170
http://www.sans.org/cyber-incident-management-2026
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

