Live Response With Ansible

Presented By: Brian Olson
whoami - Brian Olson

Who
Manage Incident Response @ Verizon Media

Why I’m Here
Share an interesting solution
Situation

- Recent Acquisition
- Self-Reported Web Compromises
- No knowledge of environment
Challenges

- All public IP addresses
- Colo’s nationwide
- No CI/CD process
- Minimal staff/knowledge
Got Security?

- No Host IDS (HIDS)
- No Network IDS (NIDS)
- No Endpoint Detection & Response (EDR)
- Default Logs
My Toolbox

NSM
• Not on Corp Network
• Multiple Colo’s Nationwide

EDR
• On-Prem solution
• Corp (internal) only
Ansible to the Rescue!

Adaptable

Not a security tool
Team Scope

- **Build & Operate Infrastructure**
- **Detection**
 - Host & network based
 - Big data analysis
 - Write detections
- **Response**
 - Digital Forensics
 - Incident Response
Remote Interaction: ssh | scp

Text Manipulation: cut | awk
sed | grep

Loops: for | while
Bash-Foo
Example

$ for x in $(cat hosts.txt); do echo $x; \
scp ./index.html ubuntu@$x:/var/www/html/; \
service apache2 restart; done
Bash Pros & Cons

Pros
- Quick & simple
- Familiar
- Iterate quickly
- Nothing special required

Cons
- Not easily reproducible
- No history/artifacts
 - Manual effort required
- Static
 - Serial execution
Stage 2: DevOps Things

<table>
<thead>
<tr>
<th></th>
<th>Chef</th>
<th>Ansible</th>
<th>Puppet</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Agent-based</td>
<td>• Agent-less</td>
<td>• Agent-Based</td>
<td>• Agent-Based or Agent-less</td>
</tr>
<tr>
<td></td>
<td>• Pull model</td>
<td>• Push model</td>
<td>• Pull model</td>
<td>• Push or pull model</td>
</tr>
<tr>
<td></td>
<td>• Ruby</td>
<td>• SSH & python</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Ansible?

- SSH based
- Familiarity w/Ad-Hoc Mode
- Iterate quickly
- Fast adoption
- Abstract details
- Self-Documenting
Example Codeblocks

- name: Start apache service
 service:
 name: apache2
 state: started
 enabled: yes
 become: true

- name: Install LAMP packages
 package:
 name: "{{ item }}"
 update_cache: yes
 state: latest
 with_items:
 - apache2
 - mysql-server
 - php
 - php-mysql
 become: true
Ansible Enablers

- **Required**
 - Install python on local & remote hosts
 - Install ansible on mac/*nix (brew)

- **Optional**
 - Configure local ssh-agent
 - ansible.cfg
 - Inventory file
 - Remote user
 - Roles path
Ansible It!

- Inventory File
 - Static or Dynamic

- Ad-Hoc Commands
 - Do things quick’n’drity

- Modules
 - Abstract the details

- Playbooks
 - Repeatability
Inventory File

[webserver]
54.32.59.20
3.80.126.[23:57]
webserver-[01:33]-denver.domain.com

[database]
34.12.87.123 # db1-denver
Unix Name
ansible all -a "uname -a"

Restart Service
ansible webservers -a "service apache2 restart"

Process List
ansible databases -a "ps -ef"
Ad-Hoc w/ Ansible Modules

Package
ansible webservers -m package -a "name=apache2 state=present"

Service
ansible webservers -m service -a "name=apache2 state=restarted"

File
ansible webservers -m file -a "path=/web/main.php state=absent"
Ad-Hoc

```bash
~/git-repos/ansible-live-response $ master ● ? ansible all -a "uname -a"
54.167.10.226 | CHANGED | rc=0 >>
Linux ip-172-30-1-45 4.15.0-1032-aws #34-Ubuntu SMP Thu Jan 17 15:18:09 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
54.174.228.4 | CHANGED | rc=0 >>
Linux ip-172-30-1-60 4.15.0-1032-aws #34-Ubuntu SMP Thu Jan 17 15:18:09 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
```
Triage Playbook

Get the Volatile Data
- Running Processes
- Netstat
- Memory*

Download & Label Files
- System & Web Logs
- Bash History
- Web Server Files
- Possible Malware
Triage - Playbook Sample

tasks file for DFIR-triage

- name: Make evidence collection directory ($pwd/artifacts)
 local_action:
 module: file
 path: artifacts/{{ inventory_hostname }}
 state: directory
 recurse: yes

PROCESS DATA

- name: Get a list of all running processes from remote hosts
 shell: ps -ef
 register: ps_result

- name: Write remote process collection results to local artifacts
 local_action:
 module: copy
 content: "{{ ps_result.stdout_lines }}"
 dest: artifacts/{{ inventory_hostname }}/processlist-{{ansible_date_time.iso8601}}.txt
Artifact Collection

- Retain remote directory structure
- Label & timestamp collected files
Artifacts

Terminal-like data

<table>
<thead>
<tr>
<th>UID</th>
<th>PID</th>
<th>PPID</th>
<th>C</th>
<th>STIME</th>
<th>TTY</th>
<th>TIME</th>
<th>CMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:03</td>
<td>/sbin/init</td>
</tr>
<tr>
<td>root</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[kthreadd]</td>
</tr>
<tr>
<td>root</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[kworker/0:0H]</td>
</tr>
<tr>
<td>root</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[mm_percpu_wq]</td>
</tr>
<tr>
<td>root</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[ksoftirqd/0]</td>
</tr>
<tr>
<td>root</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[rcu_sched]</td>
</tr>
<tr>
<td>root</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[rcu_bh]</td>
</tr>
<tr>
<td>root</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[migration/0]</td>
</tr>
<tr>
<td>root</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[watchdog/0]</td>
</tr>
<tr>
<td>root</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[cpuhp/0]</td>
</tr>
<tr>
<td>root</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[kdevtmpfs]</td>
</tr>
<tr>
<td>root</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>16:02</td>
<td>?</td>
<td>00:00:00</td>
<td>[netns]</td>
</tr>
</tbody>
</table>
Analysis

- Legit webdir files
- Stack analysis of webdir files
- Stack analysis of processes
- Unknown processes owned by apache
- Interesting network connections
Respond Playbook

Phase 1 – Stop the Bleeding
- Patch hosts
- Reconfigure Services

Phase 2 – Full Remediation
- Remove malware
- Remove unauthorized local users
- Terminate suspicious processes & network connections
- name: Upgrade all packages
 become: true
 package:
 name: "{{ item }}"
 update_cache: yes
 state: latest
 with_items:
 - default-jdk
 - apache2
 - mysql-server
 - php
 - php-mysql
 tags: phase_1

- name: Remove known malware
 file:
 state: absent
 path: /var/www/html/{{ item }}
 with_items:
 - malware.html
 - metasploit.html
 - poc.html
 - badness.html
 notify: restart_apache
 tags: phase_2
Triage - Demo
Summary

- Ansible is awesome for Live Response
- Scales reasonably well
- Modules abstract the details
- Collect all artifacts uniformly
- Playbooks standardize investigation & response
- Everything is easily customizable on the fly
Questions?

Brian Olson
E-Mail: brian@hurrikane.net
Twitter: @BrianOlsonSec
Github: https://github.com/brian-olson/ansible-live-response