
Threat Hunting Using Live Forensics
SANS Threat Hunting and IR Summit, 2018

•Need to acquire/preserve volatile artifacts

• Running processes

• Network connections

• Open files

• Hooks

• System cannot be shut down

Why Live Forensics?

• IR starts with a pivot point

• AV alert

• Network connection

• Data breach

• Abnormal behavior

• Threat hunting seeks abnormal to pivot from

Threat Hunting vs. IR

• Some things are bad no matter who you are

• Misnamed processes

• Running from abnormal directories

• Connections to known-bad hosts

• Abnormal process owners

• SANS Find Evil Poster: https://digital-
forensics.sans.org/media/poster_2014_find_evil.pdf

Signs of Evil

• Some things are more subtle

• Unauthorized processes/services/tasks

• Odd ports in use

• Code injection/hooks

• User actions

• Establish baselines – know what is normal!

Signs of Evil

• Live forensics tools must be run in a way that is…

VDocumented

VRepeatable

VSecure

•Normally achieved via batch files on Windows hosts

Challenges for Live Forensics

•No native logging or audit trail

• Some tools are OS or CPU architecture specific

•Batch files can be easily modified without warning

• Tools can be deleted or replaced

So What’s Wrong with Batch Files?

•No scripting (obviously) required

• Easy to configure for different Windows versions and
CPU architectures

•Detailed logging and hashing of all output

• Tools and commands can be verified before
execution

No-Script Automation Tool

Configuring NAT

Configuring NAT – Tools

File System
Network
OS
Process
Users

Tools Directory
*.ini file

File System
6-10.0

x64
x86

Network
x86
x64

OS

Configuring NAT – OS and CPU

File System
6-10.0

x64
x86

Network
x86
x64

OS

Windows 7 x64

Network\ping.exe + Network\ping.exe.cmd

•Only command line args

• Ex: -t -f 127.0.0.1, not ping.exe -t -f 127.0.0.1

•One execution per line

• End with blank line

Configuring NAT – Command Line Arguments

Configuring NAT – Command Line Arguments

Variable Use

%NOOUT% By default, output from each tool will be written to a text file in the output
directory specified at runtime. To prevent this for a specific tool, use the
variable %NOOUT% as the sole argument in the .cmd file, or at the end of each
line of command line arguments if other arguments are specified. This can be
used when the output directory is specified as part of the command line
arguments for the tool.

%OUTDIR% To specify the output directory as part of the command line arguments, use the
variable %OUTDIR% in place of the output directory. This variable will be
dynamically replaced with the correct output directory each time the tool is
executed. For example, "-o %OUTDIR%\output.txt" for mytool.exe will result in
the command “mytool.exe -o <selected output directory>\output.txt being
executed at runtime.

%SYSROOT% To specify the Windows system root, which may vary between hosts, use the
%SYSROOT% variable.

NAT.exe -c

•Hash of tools/commands, contents of commands

•Password protected, AES-256

•Bypass with -x switch

Configuring NAT – Integrity File

Configuring NAT – Integrity File

Running NAT

Running NAT – Options

Argument Use

-h Display help menu and exit

-x Bypass integrity check

-c Create integrity check file

-I <file> Use the specified .ini file (default is default.ini)

Demo

• Free – Use at your own risk!

•Download:

www.dflabs.com/NAT

•Questions, comments, suggestions, memes, etc:

john.moran@dflabs.com

Final Notes

Questions?

Thanks!
www.dflabs.com/NAT

John Moran
Senior Product Manager, DFLabs

john.moran@dflabs.com

