Stephen Woodrow / @srwoodrow
SANS Cloud INsecurity Summit / 8 & 11 June 2018

Cloud security
at Lyft

https://twitter.com/srwoodrow

Agenda

e Overview: Lyft & our cloud environment

e Making cloud security happen at Lyft
Service organization
Resource orchestration
ldentity & access controls

e Cloud-native security tactics

Q&A

Overview: Lyft & our
cloud environment

What is Lyft? _
| .---’:g = : 2:30 PM 4 7 -
- Lyftis a rideshare service operating in the US and Canada B r
}f I " “\\\ 5 / @‘ A AT&T Park
- Started as a hackathon project in 2012, the Lyft service has | = A,
grown very rapidly: we now serve over one million rides/day oL
thst S0 250
- From a tech standpoint:
Lyft is cloud-native—we have hosted our backend W' o,
services in AWS since the first Lyft ride % LT
Our engineering org is ~500 software engineers and e 2300 Harrison st
many more tech users/consumers S Galrals Safion
RS © ®
We have a microservices architecture and operate

. : (
hundreds of services on thousands of EC2 instances k _/ J

Lyft’s engineering culture

- “Make it happen” is one of three core values at Lyft

- Engineers are empowered to—and accountable for—making it happen:
Devops model for service ownership, deployment, and maintenance
Heavy automation supporting SDL processes, CI/CD, monitoring, etc.
Few change management checkpoints with human gatekeepers

- Engineers making it happen: 200+ deploys/day

Making cloud security
happen at Lyft

Organizing cloud resources

- At the scale of thousands of instances and millions of cloud resources, we need
abstractions to help stay organized and reason about security policies

- At Lyft we organize a number of the primitives AWS offers us into a rough abstraction
we consider a service to help “make it happen”:

Single application deployed per service
Default access to resources inside service boundary
Default isolation from other services and resources outside service boundary

Service naming at Lyft

Service naming at Lyft

webservice-production-useast’

Service naming at Lyft

webservice-production-useast’

SERVICE NAME REGION

Service organization at Lyft

/@ account production, region us-east-1

DRaE-----
7 \
Application web t

deployed from
repo web

EC2 Instances
tagged
web-prod-useastl

—— e e e e e e e o] ——
e o o o o Em o o o Em EE o EE Em Em Em =

Service organization at Lyft

EC2 Autoscale Group
web-prod-useastl
\/ » ‘_ ——

IAM Role
I web-prod-useastl

Route53 CNAME

I
I
I
I
I
I
I
I
web-prod-useastl.lyft.net I

™

(|

—)'r'
EC2 Ingces

tagged
web-prod-useastl \[web-prod-useastl

ELB

‘\ y;

DynamoDB Table
web-prod-useastl-users

'
S3 Bucket Key
s3://backups/web-prod-useastl

EC2 Security Group
web-prod-useastl

Service organization at Lyft

DynamoDB Table

EC2 Autoscale Group IAM Role web-prod-useastl-users
web-prod-useastl \ » ‘ web-prod-useastl
/

Route53 CNAME

I
I
I
I
I
I
I
I
web-prod-useastl.lyft.net I

(|

—

I
I
EC2 Instances : S3 Bucket Key
ELB tagged : s3://backups/web-prod-useastl
web-prod-useastl \[web-prod-useast] |

7y =
EC2 Security Group
web-prod-useastl

Lessons learned: service organization

- Standardizing service and resource naming makes many things easier:
Ownership, inventory, accounting
Creating a common mental model, making your docs higher-leverage
Templating and automation for service creation and maintenance

- Default IAM policy maintains strong isolation & protection

- Larger/complex services may need internal segmentation (or decomposition into
smaller services) to achieve desired security properties

Cloud resource orchestration

Cloud resource orchestration

- Orchestration lets us define infrastructure with code, enabling:
Repeatable workflow for making changes—no console or laptop changes
Code review & automated testing of infrastructure changes
Code repo as source of intent for analysis, incident response, etc.
- Enabling “make it happen”:
Service-specific resources are self-service and deployed with service repository

High-risk or account-/region-wide resources and default values are managed in a
central repository

Templated self-service orchestration

- Lyft uses Saltstack® for AWS orchestration
- Service templates are used to generate basic resource manifests for new services

- Resource names and policies based on service-specific variables (e.g. service name)
allow creation of service-isolated sets of resources

Service <ls .
Template Service

* terraform or cloudformation are better choices for new projects

Templated self-service orchestration

- Lyft uses Saltstack® for AWS orchestration
- Service templates are used to generate basic resource manifests for new services

- Resource names and policies based on service-specific variables (e.g. service name)
allow creation of service-isolated sets of resources

Service

Base templates

$variables

*terraform or cloudformation are better choices for new projects

Templated self-service orchestration

lyft / confidant

<> Code Issues 29 Pull requests 4 Projects 0

Branch: masterv | confidant / salt / orchestration / confidant.sls

https://github.com/lyft/confidant/

Templated self-service orchestration

Ensure {{ grains.cluster_name }} iam role exists:
boto_iam_role.present:
- name: {{ grains.cluster_name }}

- policies:

' '

iam':
Version: '2012-10-17'
Statement:
- Action:
- 'iam:ListRoles'
- 'iam:GetRole'
Effect: 'Allow’
Resource: '*'
'dynamodb ' :
Version: '2012-10-17'
Statement:
- Action:
- 'dynamodb:*'
Effect: 'Allow'
Resource:
- 'arn:aws:dynamodb:*:*:table/{{ grains.cluster_name }}'

- 'arn:aws:dynamodb:*:*:table/{{ grains.cluster_name }}/*'

https://qithub.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Templated self-service orchestration

Ensure {{ grains.cluster_name }} iam role exists:
boto_iam_role.present:
- name: {{ grains.cluster_name }}

- policies:

' '

iam':
Version: '2012-10-17'
Statement:
- Action:
- 'iam:ListRoles'
- 'iam:GetRole'
Effect: 'Allow’
Resource: '*'
'dynamodb ' :
Version: '2012-10-17'
Statement:
- Action:
- 'dynamodb:*'
Effect: 'Allow'
Resource:
- 'arn:aws:dynamodb:*:*:table, {{ grains.cluster_name }}'

- 'arn:aws:dynamodb:*:*:table/{{ grains.cluster_name }}/*'

https://qithub.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Templated self-service orchestration

Ensure {{ grains.cluster_name }} iam role exists:
boto_iam_role.present:
- name: {{ grains.cluster_name }}

- policies:

' '

iam':
Version: '2012-10-17'
Statement:
- Action:
- 'iam:ListRoles'
- 'iam:GetRole'
Effect: 'Allow’
Resource: '*'
'dynamodb ' :
Version: '2012-10-17'
Statement:
- Action:
- 'dynamodb:*'
Effect: 'Allow'
Resource:
- 'arn:aws:dynamodb:*:*:table, {{ grains.cluster_name }}'

- 'arn:aws:dynamodb:*:*:table/{{ grains.cluster_name }}/*'

https://qithub.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Self-service orchestration

Service Git repo) Service deploy

-@

Service resource
orchestration

Infrastructure Infrastructure deploy
Git repo

~@d

Account resource
orchestration

Lessons learned:; orchestration

- Challenges

Fleet-wide changes (e.g. instance type upgrade) requires fleet-wide redeploy

Fine-grained resource management is probably not the right level of abstraction
for most development teams

Automated lint/static analysis to make sure orchestration changes are safe
- Orchestration deployment tools require high-privilege |AM role
Jenkins become high-risk, large blast radius infrastructure

How do you know your tests aren’t running with *:* [AM role?

Identity and access controls

Identity and access controls (for humans)

- AWS IAM has account-wide blast radius!

- Choose the strongest, best-managed tool you’ve got for managing IAM Users, Roles,
and Policies

|IAM Users + orchestration vs. SSO + roles

- Enabling “make it happen”:

Self-service credential management: coinbase/self-service-iam

Allow engineers to list resources and elevate privileges for common ops tasks

Higher-risk and administrative access restricted

https://github.com/coinbase/self-service-iam

IAM Users & Groups: “just enough”

Action:

USER 1

USER 2

Action:

- sts:AssumeRole
Resource: admin-role
Effect: Allow

GROUP: ADMINS

——_—_—__J

dynamodb:List*
ec2:Describe*
iam:Get*
iam:List*
s3:List*

Resource: *
Effect: Allow

by default

IAM Roles enable temporary elevated privilege

USER
l

USER 2 I

!

l

GROUP: ADMINS :

ROLE: DEVOPS

Action: ec2:terminatelnstances
Resource: *
Effect: Allow

ROLE: ADMIN

Action: *
Resource: *
Effect: Allow

IAM Roles enable temporary elevated privilege

ROLE: DEVOPS

USER1 Action: ec2:terminatelInstances
Resource: *
-_— e - . e e e . - Effect: Allow
| |
| VUSER2 I
| ROLE: ADMIN
| |
GROUP: ADMINS
l ———————— l Action: *

AssumeRole N
Resource:

Effect: Allow

IAM Roles enable temporary elevated privilege

ROLE: DEVOPS

USER1 B N Action: ec2:terminatelInstances
Resource: *
-_— e - . e e e . - Effect: Allow
|
| VUSER2
| ROLE: ADMIN
|
GROUP: ADMINS
l ———————— l Action: *

AssumeRole

Resource: *
Effect: Allow

IAM policy to enforce MFA everywhere

ROLE: DEVOPS

¢/ aws:MultiFactorAuthPresent

USER 1 "t ea,

LIS Action: ec2:terminateInstances
Y Resource: *

— e - = = - MR Effect: Allow
l l ‘e
| USER2 I @

L 4
I ROLE: ADMIN
l

ROUP: ADMINS

| AssumeRole Action: *

Vaws:MuItiFactorAuthPresent Resource: *
Effect: Allow

IAM policy to enforce MFA everywhere

ROLE: DEVOPS

Action: ec2:terminatelnstances
USER1 SR X Resource: *
. :
Y Effect: Allow

| ¢ ¢/ aws:MultiFactorAuthPresent

USER 2 I @

l
GROUP: ADMINS

ROLE: ADMIN

Action: *
Resource: *
Effect: Allow

AssumeRole

¢/ aws:MultiFactorAuthPresent

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.htm

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.htm

Locking down the AWS root user

« The root user of an AWS account cannot be
constrained

Don’t use except when absolutely
required (pen testing, billing changes,
etc.)

- MFA is a must
« No credentials issued

- Alert on any use

Identity and access controls (for machines)

- Use |IAM Roles everywhere—Ilet AWS do the hard work to make this easy for you
Push partners to use roles with cross-account trust
- Protect the metadata service (http://169.254.169.254) when it matters:

Docker containers: Metadata proxy https://github.com/lyft/metadataproxy

Webhooks: SOCKS proxy htips://github.com/stripe/smokescreen

https://github.com/lyft/metadataproxy
https://github.com/stripe/smokescreen

Lessons learned: Identity and access controls

- |AM Users/Access Keys can quickly get messy AND have major consequences
Best case: critical production dependencies that are hard to change
Worst case: checked into source code/out on the Internet
Upshot: Use IAM Users only when you have no better alternative

- Have a plan for MFA enforcement and key rotation for all IAM Users

« Consider SSO for human users, at least for non-admin roles

Spend your time improving security, not resetting passwords

Cloud-native
security tactics

Autoscaling » Autopatching

- Autoscaling ensures you always have a set number of application instances
- Leverage the ephemeral nature of Instances to automate non-critical system patching

Requires system update on launch or continuously-updated
AMis/LaunchConfigurations

- Autoscaling as part of daily traffic load
Termination policy: OldestInstance or OldestLaunchConfiguration
- “Reaper Monkey”: explicitly terminating older instances

Blacklisting & scheduling to deal with more critical or stateful applications

Trust no one (else’s network)

- Cloud infrastructure = isolated by default = reduced blast radius

- Interconnecting office networks with cloud networks = increased blast radius
Trust administration of office network
Increased network scope for compliance assessments/etc

- Consider running VPN terminator service inside your cloud network instead

Access from office = access from home = access from coffee shop

Brawn over brains

- AWS can sometimes make the easy things hard, but also makes hard things possible

- Using automation to leverage the incremental pricing and elastic nature of cloud
resources can yield new solutions to old problems

AWS Lambda: massively parallel binary malware analysis:
https://www.binaryalert.io/

AWS S3 + Athena: Collect all the data you want, and dig into it later only if you
need to do incident response/etc.

AWS Organizations: create an AWS account per service/application for even
greater isolation

https://www.binaryalert.io/

lyrt

Thank you

8 & 11 JUNE 2018

