
Cloud security
at Lyft

Stephen Woodrow / @srwoodrow
SANS Cloud INsecurity Summit / 8 & 11 June 2018

https://twitter.com/srwoodrow

Agenda
● Overview: Lyft & our cloud environment
● Making cloud security happen at Lyft

• Service organization
• Resource orchestration
• Identity & access controls

● Cloud-native security tactics
● Q&A

Overview: Lyft & our
cloud environment

• Lyft is a rideshare service operating in the US and Canada

• Started as a hackathon project in 2012, the Lyft service has
grown very rapidly: we now serve over one million rides/day

• From a tech standpoint:

‒ Lyft is cloud-native—we have hosted our backend
services in AWS since the first Lyft ride

‒ Our engineering org is ∼500 software engineers and
many more tech users/consumers

‒ We have a microservices architecture and operate
hundreds of services on thousands of EC2 instances

What is Lyft?

• “Make it happen” is one of three core values at Lyft

• Engineers are empowered to—and accountable for—making it happen:

‒ Devops model for service ownership, deployment, and maintenance

‒ Heavy automation supporting SDL processes, CI/CD, monitoring, etc.

‒ Few change management checkpoints with human gatekeepers

• Engineers making it happen: 200+ deploys/day

Lyft’s engineering culture

Making cloud security
happen at Lyft

Organizing cloud resources
• At the scale of thousands of instances and millions of cloud resources, we need

abstractions to help stay organized and reason about security policies

• At Lyft we organize a number of the primitives AWS offers us into a rough abstraction
we consider a service to help “make it happen”:

‒ Single application deployed per service
‒ Default access to resources inside service boundary
‒ Default isolation from other services and resources outside service boundary

Service naming at Lyft

Service naming at Lyft

webservice-production-useast1

Service naming at Lyft

webservice-production-useast1

SERVICE NAME ENVIRONMENT REGION

Service organization at Lyft

Application web
deployed from

repo web

EC2 Instances
tagged

web-prod-useast1

account production, region us-east-1

Service organization at Lyft

Route53 CNAME
web-prod-useast1.lyft.net

ELB
web-prod-useast1

EC2 Security Group
web-prod-useast1

EC2 Autoscale Group
web-prod-useast1

IAM Role
web-prod-useast1

DynamoDB Table
web-prod-useast1-users

S3 Bucket Key
s3://backups/web-prod-useast1

EC2 Instances
tagged

web-prod-useast1

Service organization at Lyft

Route53 CNAME
web-prod-useast1.lyft.net

ELB
web-prod-useast1

EC2 Autoscale Group
web-prod-useast1

IAM Role
web-prod-useast1

EC2 Instances
tagged

web-prod-useast1

DynamoDB Table
web-prod-useast1-users

✔

✔

EC2 Security Group
web-prod-useast1

S3 Bucket Key
s3://backups/web-prod-useast1

Lessons learned: service organization
• Standardizing service and resource naming makes many things easier:

‒ Ownership, inventory, accounting

‒ Creating a common mental model, making your docs higher-leverage

‒ Templating and automation for service creation and maintenance

• Default IAM policy maintains strong isolation & protection

• Larger/complex services may need internal segmentation (or decomposition into
smaller services) to achieve desired security properties

Cloud resource orchestration

Cloud resource orchestration
• Orchestration lets us define infrastructure with code, enabling:

‒ Repeatable workflow for making changes—no console or laptop changes

‒ Code review & automated testing of infrastructure changes

‒ Code repo as source of intent for analysis, incident response, etc.

• Enabling “make it happen”:

‒ Service-specific resources are self-service and deployed with service repository

‒ High-risk or account-/region-wide resources and default values are managed in a
central repository

• Lyft uses Saltstack* for AWS orchestration

• Service templates are used to generate basic resource manifests for new services

• Resource names and policies based on service-specific variables (e.g. service name)
allow creation of service-isolated sets of resources

Templated self-service orchestration

* terraform or cloudformation are better choices for new projects

Service.sls
Service

Template

• Lyft uses Saltstack* for AWS orchestration

• Service templates are used to generate basic resource manifests for new services

• Resource names and policies based on service-specific variables (e.g. service name)
allow creation of service-isolated sets of resources

Templated self-service orchestration

* terraform or cloudformation are better choices for new projects

$variables

Service

Base templates

.sls
Service

Template

Templated self-service orchestration

https://github.com/lyft/confidant/

https://github.com/lyft/confidant/

Templated self-service orchestration

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Templated self-service orchestration

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Templated self-service orchestration

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

confidant-production-useast1

https://github.com/lyft/confidant/blob/master/salt/orchestration/confidant.sls

Self-service orchestration

Service Git repo Service deploy Service resource
orchestration

Infrastructure
Git repo

Infrastructure deploy Account resource
orchestration

D
ef

au
lt/

st
an

da
rd

co
nf

ig
ur

at
io

n

Lessons learned: orchestration
• Challenges

‒ Fleet-wide changes (e.g. instance type upgrade) requires fleet-wide redeploy

‒ Fine-grained resource management is probably not the right level of abstraction
for most development teams

‒ Automated lint/static analysis to make sure orchestration changes are safe

• Orchestration deployment tools require high-privilege IAM role

‒ Jenkins become high-risk, large blast radius infrastructure

‒ How do you know your tests aren’t running with *:* IAM role?

Identity and access controls

Identity and access controls (for humans)
• AWS IAM has account-wide blast radius!

• Choose the strongest, best-managed tool you’ve got for managing IAM Users, Roles,
and Policies

‒ IAM Users + orchestration vs. SSO + roles

• Enabling “make it happen”:

‒ Self-service credential management: coinbase/self-service-iam

‒ Allow engineers to list resources and elevate privileges for common ops tasks

‒ Higher-risk and administrative access restricted

https://github.com/coinbase/self-service-iam

GROUP: ADMINS

IAM Users & Groups: “just enough” by default

GROUP: ENGINEERING

USER 1

USER 2

Action:
 - dynamodb:List*
 - ec2:Describe*
 - iam:Get*
 - iam:List*
 - s3:List*
 - ...
Resource: *
Effect: Allow

Action:
 - sts:AssumeRole
Resource: admin-role
Effect: Allow

GROUP: ADMINS

IAM Roles enable temporary elevated privilege

GROUP: ENGINEERING ROLE: DEVOPS

ROLE: ADMIN

USER 1

USER 2

Action: ec2:terminateInstances
Resource: *
Effect: Allow

Action: *
Resource: *
Effect: Allow

IAM Roles enable temporary elevated privilege

GROUP: ENGINEERING

GROUP: ADMINS

ROLE: DEVOPS

ROLE: ADMIN

USER 1

USER 2

Action: ec2:terminateInstances
Resource: *
Effect: Allow

Action: *
Resource: *
Effect: Allow

AssumeRole

AssumeRole

IAM Roles enable temporary elevated privilege

GROUP: ENGINEERING

GROUP: ADMINS

ROLE: DEVOPS

ROLE: ADMIN

USER 1

USER 2

Action: ec2:terminateInstances
Resource: *
Effect: Allow

Action: *
Resource: *
Effect: Allow

AssumeRole

AssumeRole

GROUP: ADMINS

IAM policy to enforce MFA everywhere

GROUP: ENGINEERING ROLE: DEVOPS

ROLE: ADMIN

USER 1

USER 2

Action: ec2:terminateInstances
Resource: *
Effect: Allow

Action: *
Resource: *
Effect: Allow

AssumeRole
✔aws:MultiFactorAuthPresent

AssumeRole
✔aws:MultiFactorAuthPresent

GROUP: ADMINS

IAM policy to enforce MFA everywhere

GROUP: ENGINEERING ROLE: DEVOPS

ROLE: ADMIN

✔aws:MultiFactorAuthPresent

✔aws:MultiFactorAuthPresent

USER 1

USER 2

Action: ec2:terminateInstances
Resource: *
Effect: Allow

Action: *
Resource: *
Effect: Allow

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.htm

AssumeRole

AssumeRole

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.htm

• The root user of an AWS account cannot be
constrained

‒ Don’t use except when absolutely
required (pen testing, billing changes,
etc.)

• MFA is a must

• No credentials issued

• Alert on any use

Locking down the AWS root user

Identity and access controls (for machines)
• Use IAM Roles everywhere—let AWS do the hard work to make this easy for you

‒ Push partners to use roles with cross-account trust

• Protect the metadata service (http://169.254.169.254) when it matters:

‒ Docker containers: Metadata proxy https://github.com/lyft/metadataproxy

‒ Webhooks: SOCKS proxy https://github.com/stripe/smokescreen

https://github.com/lyft/metadataproxy
https://github.com/stripe/smokescreen

Lessons learned: Identity and access controls
• IAM Users/Access Keys can quickly get messy AND have major consequences

‒ Best case: critical production dependencies that are hard to change

‒ Worst case: checked into source code/out on the Internet

‒ Upshot: Use IAM Users only when you have no better alternative

• Have a plan for MFA enforcement and key rotation for all IAM Users

• Consider SSO for human users, at least for non-admin roles

‒ Spend your time improving security, not resetting passwords

Cloud-native
security tactics

Autoscaling → Autopatching
• Autoscaling ensures you always have a set number of application instances

• Leverage the ephemeral nature of Instances to automate non-critical system patching

‒ Requires system update on launch or continuously-updated
AMIs/LaunchConfigurations

• Autoscaling as part of daily traffic load

‒ Termination policy: OldestInstance or OldestLaunchConfiguration

• “Reaper Monkey”: explicitly terminating older instances

‒ Blacklisting & scheduling to deal with more critical or stateful applications

Trust no one (else’s network)
• Cloud infrastructure → isolated by default → reduced blast radius

• Interconnecting office networks with cloud networks → increased blast radius

‒ Trust administration of office network

‒ Increased network scope for compliance assessments/etc

• Consider running VPN terminator service inside your cloud network instead

‒ Access from office = access from home = access from coffee shop

Brawn over brains
• AWS can sometimes make the easy things hard, but also makes hard things possible

• Using automation to leverage the incremental pricing and elastic nature of cloud
resources can yield new solutions to old problems

‒ AWS Lambda: massively parallel binary malware analysis:
https://www.binaryalert.io/

‒ AWS S3 + Athena: Collect all the data you want, and dig into it later only if you
need to do incident response/etc.

‒ AWS Organizations: create an AWS account per service/application for even
greater isolation

https://www.binaryalert.io/

Thank you
8 & 11 JUNE 2018

