Fortifying the Security Assurance Process Using Software Composition Analysis

Jason Gay
Cybersecurity Engineer
Agenda

Introduction to Magna Electronics
Vehicle Systems and Open Source
Software Composition Analysis
Evaluation & Final Metrics
Summary
Magna Electronics Overview

AUTOMATED DRIVING SYSTEMS

SECURE CONNECTIVITY

ELECTRIFICATION
Agenda

Introduction to Magna Electronics

Vehicle Systems and Open Source

Software Composition Analysis

Evaluation & Final Metrics

Summary
Advanced Vehicle Systems

- Vehicles becoming more connected and automated
- Cybersecurity impacts become more critical
- Cybersecurity practices need to keep up
Magna Electronics Systems

- LED Lighting Systems
- Domain Controllers
- DCT and Hybrid Transmissions
- Front Camera
- Auxiliary Systems (Pumps, eFans, etc.)
- Front Lighting
- Actuators
- Secure Connectivity
- Power Closure Systems
- Rear Camera
- Rear Lighting
- Latches
- Hybrid and Electric Systems
- Inside / Outside Mirrors
- 4WD / AWD Systems
- RADAR & LiDAR
Open Source Software

- Open-Source software is widely utilized for connected applications
 - Speed up application development process
 - May increase exposure to certain types of risk
Agenda

Introduction to Magna Electronics

Vehicle Systems and Open Source

Software Composition Analysis

Evaluation & Final Metrics

Summary
What is Software Composition Analysis?

- **Software Composition Analysis tools:**
 - Generate a software Bill of Materials
 - Map open source components to vulnerabilities published in NVD
 - Identify and treat vulnerabilities earlier
 - Avoid costly design changes later
National Vulnerability Database

- Vulnerabilities reported as a CVE entry in the NVD
 - CVE: Common Vulnerabilities and Exposures
 - Government repository of vulnerability information
 - Managed by National Institute of Standards and Technology
 - Common Vulnerability Scoring System (CVSS)
Common Vulnerability Scoring System

Common Vulnerability Scoring System Version 3.0 Calculator

Hover over metric group names, metric names and metric values for a summary of the information in the official CVSS v3.0 Specification Document. The Specification is available in the list of links on the left, along with a User Guide providing additional scoring guidance, an Examples document of scored vulnerabilities, and notes on using this calculator (including its design and an XML representation for CVSS v3.0).

Base Score

Attack Vector (AV)
- Network (N)
- Adjacent (A)
- Local (L)
- Physical (P)

Attack Complexity (AC)
- Low (L)
- High (H)

Privileges Required (PR)
- None (N)
- Low (L)
- High (H)

User Interaction (UI)
- None (N)
- Required (R)

Scope (S)
- Unchanged (U)
- Changed (C)

Confidentiality (C)
- None (N)
- Low (L)
- High (H)

Integrity (I)
- None (N)
- Low (L)
- High (H)

Availability (A)
- None (N)
- Low (L)
- High (H)

Vector String - CVSS:3.1/AV:N/AC:L/PR:N/UI:L/R0/W/C:NL/I:NL/A:N

Rating	**CVSS Score**
None | 0.0
Low | 0.1 - 3.9
Medium | 4.0 - 6.9
High | 7.0 - 8.9
Critical | 9.0 - 10.0
Software Composition Analysis

- **Software Composition Analysis becomes increasingly valuable**
 - Can be used as an on-demand scan tool
 - Can be integrated into an automation server to periodically scan and report
 - Provides notifications when new relevant vulnerabilities are published
Agenda

Introduction to Magna Electronics

Vehicle Systems and Open Source

Software Composition Analysis

Evaluation

Summary
Overview

• Three SCA tools were evaluated based on a sample software project
 – Manual post-processing of the results

• Issues encountered
 – False identification of components
 – Misidentifying component version numbers
 – Incomplete coverage

• Developed scoring system to rate each tool’s effectiveness
 – Based on estimation of the value each report provides
Metrics Considered

Preliminary Metrics

- **Quantity of Accurate Matches**
 - Number of CVEs reported that were determined to be correctly identified our project

- **Composite accurate CVSS Scores**
 - Sum of every accurate CVE’s CVSS score

- **Quality of Reported Data**
 - Results sorted into Accurate Matches, False Matches, and Version Mismatches
Quantity of Accurate Matches

Accurate Matches by CVSS Score

<table>
<thead>
<tr>
<th></th>
<th>Tool X</th>
<th>Tool Y</th>
<th>Tool Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>79</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Med</td>
<td>127</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>Low</td>
<td>37</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Composite CVSS Scores

<table>
<thead>
<tr>
<th>Tool</th>
<th>Total CVSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool X</td>
<td>1,406.0</td>
</tr>
<tr>
<td>Tool Y</td>
<td>256.5</td>
</tr>
<tr>
<td>Tool Z</td>
<td>428.6</td>
</tr>
</tbody>
</table>
Quality of Reported Data

TOOL X
- **Accurate**: 16%
- **FALSE**: 3%
- **Version Mismatch**: 81%

TOOL Y
- **Accurate**: 14%
- **FALSE**: 0%
- **Version Mismatch**: 86%

TOOL Z
- **Accurate**: 0.5%
- **FALSE**: 0%
- **Version Mismatch**: 99%

Table of Data

<table>
<thead>
<tr>
<th>Tool</th>
<th>Accurate</th>
<th>False</th>
<th>Version Mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool X</td>
<td>243</td>
<td>50</td>
<td>1,236</td>
</tr>
<tr>
<td>Tool Y</td>
<td>50</td>
<td>0</td>
<td>305</td>
</tr>
<tr>
<td>Tool Z</td>
<td>78</td>
<td>1</td>
<td>14,790</td>
</tr>
</tbody>
</table>
Final Metrics
Final Metrics

• Two Final Metrics
 – Total Coverage (%)
 • Number of accurate matches (out of composite unique matches found by all 3 tools)
 – Weighted Quality
 • Single score using the following scoring system:

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate Vulnerability</td>
<td>+ [CVSS Score]</td>
</tr>
<tr>
<td>False Positives</td>
<td>-1 point</td>
</tr>
<tr>
<td>Version Mismatches</td>
<td>-0.1 point</td>
</tr>
</tbody>
</table>
Total Coverage

Coverage of the 289 Unique CVEs

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool X</td>
<td>243</td>
<td>84.08</td>
</tr>
<tr>
<td>Tool Y</td>
<td>50</td>
<td>17.30</td>
</tr>
<tr>
<td>Tool Z</td>
<td>78</td>
<td>26.99</td>
</tr>
</tbody>
</table>

- **Tool X**: 243 (84.08%)
- **Tool Y**: 50 (17.30%)
- **Tool Z**: 78 (26.99%)
Weighted Quality

- Composite CVSS score represents positive value
- False positives and mismatched versions provide negative value

<table>
<thead>
<tr>
<th>Tool</th>
<th>Composite CVSS</th>
<th>False Positives</th>
<th>Version Mismatches</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool X</td>
<td>1,406.0</td>
<td>50</td>
<td>1,236</td>
<td>1,232.4</td>
</tr>
<tr>
<td>Tool Y</td>
<td>256.6</td>
<td>0</td>
<td>305</td>
<td>226</td>
</tr>
<tr>
<td>Tool Z</td>
<td>428.6</td>
<td>1</td>
<td>14,970</td>
<td>-1,069.4</td>
</tr>
</tbody>
</table>

Score = Composite CVSS - False Positives - (Mismatches/10)
Conclusion

- Decision was made clear after processing and organizing the results
- Rating template applied to other internal project scans

<table>
<thead>
<tr>
<th>Tool</th>
<th>Weighted Quality</th>
<th>Total Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool X</td>
<td>1,232.4</td>
<td>84.08</td>
</tr>
<tr>
<td>Tool Y</td>
<td>226.0</td>
<td>17.30</td>
</tr>
<tr>
<td>Tool Z</td>
<td>-1,069.4</td>
<td>26.99</td>
</tr>
</tbody>
</table>
Introduction to Magna Electronics

Vehicle Systems and Open Source

Software Composition Analysis

Evaluation & Final Metrics

Summary
Summary

- Software Composition Analysis is a powerful piece of the Secure Development Lifecycle

- Results vary widely from tool to tool

- Having a clear approach will have a significant impact on evaluation time and resulting value
Thank you