
Combating Malware in the age of
APT

SANS Digital Forensic and Incident Response Summit
July 2010

Jason Garman
CTO, Kyrus Technology

New directions for malware
• Malicious code used in APT attacks are usually:

– Not “sexy” – the simple techniques work well!
– To some extent, custom

• Not widely disseminated = not picked up by AV
• Not necessarily custom code but custom “packaging”

– Highly targeted
• Mostly a factor of the delivery mechanism, spear-phishing

email, web link, etc.
– Modular

• Monolithic binary is risky; reveals too much about the MO,
capabilities of the attacker

Modular?
• Historically your neighborhood script kiddie had one of two choices

for his exploitation tools:
– The Unix way: a lot of tools, each one does a certain function

very, very well
– The Microsoft Word way: one tool to rule them all, contains all

the functionality plus the kitchen sink

• However both of these techniques have drawbacks
– The Unix way inevitably leads to tools that have vastly different

interfaces, difficult learning curve
– The Word way helps ensure a consistent interface but exposes

all of your capabilities at once to the malware analyst

Modular Implants vs. Memory Analysis
• These modular implants pose a significant challenge to the incident

responder
– No longer is the entire binary (or binaries) available for viewing

and analysis from the disk
– Now we must fuse together the results of traditional malware

analysis with the volatile data acquisition

• Malware authors will continue to improve in this arena
– Freeing unused memory as soon as it is no longer necessary
– Zeroing out sensitive memory areas after use

• Will need more research and development to keep pace with the
malicious code authors!

4

Case Study: Poison Ivy

The Challenge

• A 7kb file? Probably not much in there… but let’s try anyway.

• <Screenshot of IDA graph view>

The 10,000 foot view

What do we have?
• We know that it pulls in several useful imports:

– Socket creation/connection
– Registry set/query (RegSetValue, etc.)
– File manipulation (CreateFile/WriteFile, etc.)
– Process listing (CreateToolHelp32Snapshot…)
– Memory manipulation (VirtualAlloc/Free)

• Also, some framework for future “modules”:
– Most notably, a custom import resolver (to avoid using

GetProcAddress)
– Also, decryption code (Camellia block cipher)

But… not much else
• The application code as it exists on disk is limited to placing itself in

the run key (for persistence) and using the network functions to “call
out” to a server

• No indication of “command” functionality… but instead:
– It validates that the server has the correct key
– Decrypts the incoming data
– Allocates some memory, copying the decrypted data to the new

memory area
– … and jumps to it (blindly)

So now what?
• We can use the memory image of the target machine to (hopefully)

reconstruct some of the capabilities loaded at run time by the
attacker

• Wouldn’t it be nice to have some record of the commands invoked
by the attacker as well?

Some questions we can answer
• What dlls were loaded into this process?

– Use dlllist from volatility

• Are there executable code segments outside of the mapped
executable image?
– If so, can we disassemble them?
– Use the VAD tree to find these memory mappings and dump

using vaddump from volatility

• What strings exist that might indicate malicious activity?
– Possibly including command lines, etc.

• More importantly, we want to exclude 7kb image from these
analyses, so we can “diff” against a baseline

Volatile “Diffing”
• Take a “baseline” of the VAD tree/DLL list/file list/etc when the

binary has started up (without network connection)

• Compare with the corresponding analysis on the memory image
from your incident

• This is especially useful if the original binary was packed
– For example, the memory regions used to unpack the binary

• For example…

Example
• Collect the DLL listing for the baseline and incident images:

– volatility dlllist –p [PID] -f [Baseline Memory
Image] > dlllist_base.txt

– volatility vadinfo –p [PID] -f [Incident Memory
Image] > dlllist_incident.txt

• Diff the two to determine what new DLLs were loaded once Poison
Ivy was able to call out to the C&C server:
– diff –u dlllist_base.txt dlllist_incident.txt

Diffing the Loaded DLLs
• The code executed from the server loads several additional

Windows DLLs:

\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\comctl32.dll

\WINDOWS\system32\atl.dll

\WINDOWS\system32\avicap32.dll

\WINDOWS\system32\comctl32.dll

\WINDOWS\system32\crypt32.dll

\WINDOWS\system32\iphlpapi.dll

\WINDOWS\system32\mpr.dll

\WINDOWS\system32\msasn1.dll

\WINDOWS\system32\msvfw32.dll

\WINDOWS\system32\pstorec.dll

\WINDOWS\system32\shell32.dll

\WINDOWS\system32\winmm.dll

Getting to Executable Code…
• We could dump the entire process space, but that includes a lot of

code & data we’re not interested in (or have already analyzed)…

• So let’s use “VAD Diffing” to narrow down to the new code
downloaded by the tool from the network

• But first… what is the VAD?
– Virtual Address Descriptor
– Forensic application first discussed in a 2007 paper by Brendan

Dolan-Gavitt
– Essentially, metadata about allocated memory regions in a

process
• Is the region backed by disk?
• What are the page protections?

VAD Tree for Poison Ivy

The VAD info list
• Each loaded executable or DLL image will have its own entry in the

VAD info list

VAD node @8221ec40 Start 65000000 End 6502dfff Tag Vad

Flags: ImageMap

Commit Charge: 15 Protection: 7

ControlArea @820db218 Segment e1835300

Dereference list: Flink 00000000, Blink 00000000

NumberOfSectionReferences: 0 NumberOfPfnReferences: 32

NumberOfMappedViews: 1 NumberOfSubsections: 5

FlushInProgressCount: 0 NumberOfUserReferences: 1

Flags: Accessed, HadUserReference, Image, File

FileObject @822c6028 (024c6028), Name: \WINDOWS\system32\advpack.dll
WaitingForDeletion Event: 00000000

ModifiedWriteCount: 0 NumberOfSystemCacheViews: 0

First prototype PTE: e1835340 Last contiguous PTE: fffffffc

Flags2: Inherit

File offset: 00000000

The VAD info list
• Dynamically allocated memory looks a bit different:

VAD node @81de8288 Start 00aa0000 End 00aa0fff Tag VadS

Flags: MemCommit, PrivateMemory

Commit Charge: 1 Protection: 6

VAD node @81d68330 Start 00ac0000 End 00ac0fff Tag VadS

Flags: MemCommit, PrivateMemory

Commit Charge: 1 Protection: 6

• We are most interested in these segments!

• As long as the system patchlevels match between the two machines
and the program’s allocation pattern doesn’t change wildly between
runs, you can get meaningful results from this (crude) method

19

IDA Pro with Dynamically Loaded Modules

What are we missing?
• How do the pieces fit together? Not clear…

– Perhaps with interpretation of the thread state and stack we
could determine a code flow

– Would need to be semi-automated to be useful

• Everything in Poison Ivy is PIC, so lots of tables of imports and local
functions are used vftable-style
– Requires some significant effort on the part of the reverse

engineer, but can be automated

• Once a module is no longer needed, the memory is VirtualFree()’d
– Unlinks the memory region from the VAD tree and makes it very

difficult to find and associate back with the process
– Means we lose not only modules but also the associated data

(commands, search strings, etc.)

There be Nuggets
• Fragments of data before

decompression:
– “confidential

information.txt”
– Not reliable as it

gets overwritten
pretty quickly

Which leaves us with…
• Some answers...

– We can quickly focus in on code loaded/injected at runtime
– That code can be analyzed just as if it were sitting on disk

• But in general, more questions …
– How do we (or can we) get that list of commands we were

promised?
– What new tools & techniques are required (or even possible)

against this class of malicious code?
– How best to integrate more “context”

available from the memory dump into
the reverse engineering analysis?

Questions?

Jason Garman
jason.garman@kyrus-tech.com

24

	Combating Malware in the age of APT
	New directions for malware
	Modular?
	Modular Implants vs. Memory Analysis
	Case Study: Poison Ivy
	The Challenge
	Slide Number 7
	The 10,000 foot view
	What do we have?
	But… not much else
	So now what?
	Some questions we can answer
	Volatile “Diffing”
	Example
	Diffing the Loaded DLLs
	Getting to Executable Code…
	VAD Tree for Poison Ivy
	The VAD info list
	The VAD info list
	IDA Pro with Dynamically Loaded Modules
	What are we missing?
	There be Nuggets
	Which leaves us with…
	Questions?

