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New directions for malware
• Malicious code used in APT attacks are usually:

– Not “sexy” – the simple techniques work well!
– To some extent, custom

• Not widely disseminated = not picked up by AV
• Not necessarily custom code but custom “packaging”

– Highly targeted
• Mostly a factor of the delivery mechanism, spear-phishing 

email, web link, etc.
– Modular

• Monolithic binary is risky; reveals too much about the MO, 
capabilities of the attacker



Modular?
• Historically your neighborhood script kiddie had one of two choices 

for his exploitation tools:
– The Unix way: a lot of tools, each one does a certain function 

very, very well
– The Microsoft Word way: one tool to rule them all, contains all 

the functionality plus the kitchen sink

• However both of these techniques have drawbacks
– The Unix way inevitably leads to tools that have vastly different 

interfaces, difficult learning curve
– The Word way helps ensure a consistent interface but exposes 

all of your capabilities at once to the malware analyst



Modular Implants vs. Memory Analysis
• These modular implants pose a significant challenge to the incident 

responder
– No longer is the entire binary (or binaries) available for viewing 

and analysis from the disk
– Now we must fuse together the results of traditional malware 

analysis with the volatile data acquisition

• Malware authors will continue to improve in this arena
– Freeing unused memory as soon as it is no longer necessary
– Zeroing out sensitive memory areas after use

• Will need more research and development to keep pace with the 
malicious code authors!
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Case Study: Poison Ivy



The Challenge

• A 7kb file?  Probably not much in there… but let’s try anyway.



• <Screenshot of IDA graph view>



The 10,000 foot view



What do we have?
• We know that it pulls in several useful imports:

– Socket creation/connection
– Registry set/query (RegSetValue, etc.)
– File manipulation (CreateFile/WriteFile, etc.)
– Process listing (CreateToolHelp32Snapshot…)
– Memory manipulation (VirtualAlloc/Free)

• Also, some framework for future “modules”:
– Most notably, a custom import resolver (to avoid using 

GetProcAddress)
– Also, decryption code (Camellia block cipher)



But… not much else
• The application code as it exists on disk is limited to placing itself in 

the run key (for persistence) and using the network functions to “call 
out” to a server

• No indication of “command” functionality… but instead:
– It validates that the server has the correct key
– Decrypts the incoming data
– Allocates some memory, copying the decrypted data to the new 

memory area
– … and jumps to it (blindly)



So now what?
• We can use the memory image of the target machine to (hopefully) 

reconstruct some of the capabilities loaded at run time by the 
attacker

• Wouldn’t it be nice to have some record of the commands invoked 
by the attacker as well?



Some questions we can answer
• What dlls were loaded into this process?

– Use dlllist from volatility

• Are there executable code segments outside of the mapped 
executable image?
– If so, can we disassemble them?
– Use the VAD tree to find these memory mappings and dump 

using vaddump from volatility

• What strings exist that might indicate malicious activity?
– Possibly including command lines, etc.

• More importantly, we want to exclude 7kb image from these 
analyses, so we can “diff” against a baseline



Volatile “Diffing”
• Take a “baseline” of the VAD tree/DLL list/file list/etc when the 

binary has started up (without network connection)

• Compare with the corresponding analysis on the memory image 
from your incident

• This is especially useful if the original binary was packed
– For example, the memory regions used to unpack the binary 

• For example…



Example
• Collect the DLL listing for the baseline and incident images:

– volatility dlllist –p [PID] -f [Baseline Memory 
Image] > dlllist_base.txt

– volatility vadinfo –p [PID] -f [Incident Memory 
Image] > dlllist_incident.txt

• Diff the two to determine what new DLLs were loaded once Poison 
Ivy was able to call out to the C&C server:
– diff –u dlllist_base.txt dlllist_incident.txt



Diffing the Loaded DLLs
• The code executed from the server loads several additional 

Windows DLLs:

\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\comctl32.dll

\WINDOWS\system32\atl.dll

\WINDOWS\system32\avicap32.dll

\WINDOWS\system32\comctl32.dll

\WINDOWS\system32\crypt32.dll

\WINDOWS\system32\iphlpapi.dll

\WINDOWS\system32\mpr.dll

\WINDOWS\system32\msasn1.dll

\WINDOWS\system32\msvfw32.dll

\WINDOWS\system32\pstorec.dll

\WINDOWS\system32\shell32.dll

\WINDOWS\system32\winmm.dll



Getting to Executable Code…
• We could dump the entire process space, but that includes a lot of 

code & data we’re not interested in (or have already analyzed)…

• So let’s use “VAD Diffing” to narrow down to the new code 
downloaded by the tool from the network

• But first… what is the VAD?
– Virtual Address Descriptor
– Forensic application first discussed in a 2007 paper by Brendan 

Dolan-Gavitt
– Essentially, metadata about allocated memory regions in a 

process
• Is the region backed by disk?
• What are the page protections?



VAD Tree for Poison Ivy



The VAD info list
• Each loaded executable or DLL image will have its own entry in the 

VAD info list

VAD node @8221ec40 Start 65000000 End 6502dfff Tag Vad

Flags: ImageMap

Commit Charge: 15 Protection: 7

ControlArea @820db218 Segment e1835300

Dereference list: Flink 00000000, Blink 00000000

NumberOfSectionReferences:          0 NumberOfPfnReferences:          32

NumberOfMappedViews:                1 NumberOfSubsections:             5

FlushInProgressCount:               0 NumberOfUserReferences:          1

Flags: Accessed, HadUserReference, Image, File

FileObject @822c6028 (024c6028), Name: \WINDOWS\system32\advpack.dll
WaitingForDeletion Event: 00000000

ModifiedWriteCount:        0 NumberOfSystemCacheViews:        0

First prototype PTE: e1835340 Last contiguous PTE: fffffffc

Flags2: Inherit

File offset: 00000000



The VAD info list
• Dynamically allocated memory looks a bit different:

VAD node @81de8288 Start 00aa0000 End 00aa0fff Tag VadS

Flags: MemCommit, PrivateMemory

Commit Charge: 1 Protection: 6

VAD node @81d68330 Start 00ac0000 End 00ac0fff Tag VadS

Flags: MemCommit, PrivateMemory

Commit Charge: 1 Protection: 6

• We are most interested in these segments!

• As long as the system patchlevels match between the two machines 
and the program’s allocation pattern doesn’t change wildly between 
runs, you can get meaningful results from this (crude) method 
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IDA Pro with Dynamically Loaded Modules



What are we missing?
• How do the pieces fit together?  Not clear…

– Perhaps with interpretation of the thread state and stack we 
could determine a code flow

– Would need to be semi-automated to be useful

• Everything in Poison Ivy is PIC, so lots of tables of imports and local 
functions are used vftable-style
– Requires some significant effort on the part of the reverse 

engineer, but can be automated

• Once a module is no longer needed, the memory is VirtualFree()’d
– Unlinks the memory region from the VAD tree and makes it very 

difficult to find and associate back with the process
– Means we lose not only modules but also the associated data 

(commands, search strings, etc.)



There be Nuggets
• Fragments of data before 

decompression:
– “confidential 

information.txt”
– Not reliable as it 

gets overwritten 
pretty quickly



Which leaves us with…
• Some answers...

– We can quickly focus in on code loaded/injected at runtime
– That code can be analyzed just as if it were sitting on disk

• But in general, more questions …
– How do we (or can we) get that list of commands we were 

promised?
– What new tools & techniques are required (or even possible) 

against this class of malicious code?
– How best to integrate more “context” 

available from the memory dump into 
the reverse engineering analysis?



Questions?

Jason Garman
jason.garman@kyrus-tech.com
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