AMI-SEC ASAP Red-Team Initiative

Matthew Carpenter
InGuardians
matt@inguardians.com
http://www.inguardians.com
Purpose of Red-Team Testing

- Test the relative-security of existing meter solutions
- Identify Vulnerability Classes using a Bottom-Up Approach
- Real-World Security Pen-Testing Guidelines
Why Bottom-Up?

- Security Initiatives Start Top-Down.
 - Often identify things to protect
- Hacking often starts Bottom-Up
 - Identify what really exists
 - Keeping the "Prize" (at the top) in mind
 - Creatively leverage opportunities at the bottom
 - To impact Value-Streams at the top
Hacker's Serenity Prayer

- God give me the Serenity to:
 - Alter the Alterable
 - Get around the Unalterable
 - The Creativity and Tenacity to own the System
 - and Never Give Up...
What is Alterable? (aka. What Can We Tickle?)

- Network Traffic
- Network Access
- Meter Access
- "Collector"/Bridge/Network Gear
- Head-End?
Network Traffic

- Capture
- Injection/Becoming a node
- Man-In-The-Middle
 - Firmware update
 - Interception/Modification of Command and Control
 - All your meters are belong to us
- Denial of Service
 - Complete
 - Selective
- Route-Manipulation
Network Access (HAN/NAN/WAN)

- Attacking Services provided by other Nodes on the Network
 - Similar to Internet-Attacks with Metasploit or Core Impact
 - Weak Authentication/Authorization
 - Buffer Overflows
 - Integer Over/Underruns
 - Format String Flaws
 - Sandbox Issues (and other Logic Flaws)
 - Bleed from HAN to NAN, etc...
Meter/Collector/Network Gear

- Firmware removal and overwriting
- BSL Password Cracking
- Password/Crypto-key Capture
 - From Memory
 - Over I2C/SPI Bus
- More Man-In-The-Middle Attacks
Head End

- Not yet in scope for project, but...
 - Analyze Head-End System
 - Include Architecture and Code
 - Common IT Vulnerabilities?
 - Common Programming Errors?
 - Meter Impersonation?
 - False Data
Supporting Attacks:

- **Crypto:**
 - Steal from memory
 - Steal from circuitry (BUS attacks)
 - Crack over network

- **BSL Cracking**
 - Passwords
 - Bypassing Security Routines

- **Firmware updates**
 - Steal / Inject “Custom”
 - Stop "Security Bits"

- **Timing and Power-manipulation Attacks**
 - Skip/Stop execution of certain instructions
 - Manipulate erase procedures
 - Avoid setting the "Security Bits" during firmware upgrade
Control and Pwnership Metrics

- How damaging is any one vulnerability?
- Some architectures are supposedly more secure than others
- Prove it
Summary

- Identify key interfaces attackers can manipulate
- Analyze the outcome of that manipulation
- Test for Proof
- Evaluate Impact to Value-Streams