Applying Cybersecurity Processes to Autonomous Vehicles

Embedded Systems Security Group
Agenda

- Identify the problem
- Review the challenges
- Applying risk assessment techniques
- Security infusion to design process
- Conclusions/Wrap-up
- Questions/Contact
What’s the Problem?

• Problem?
 o How to apply conventional penetration testing methods to autonomous vehicle technology?

• Why address it now?
 o Autonomous Technology is transitioning out of the lab and into the streets.
 o Proactively address security to avoid “patching in” later.

• What can we do right now?
 o Generate discussion
 o Evaluate sensors
 o Develop requirements
 o Influence vendors
Types of Challenges

• **Experimental** - Just trying to make it work
 o Focused on meeting basic performance
 o Security seen as hindrance to prototyping
 o Operating in controlled environment
 o “Worry about it later”

• **Garbage In = Garbage Out**
 o Sensor data only as good as the source
 o Making assumptions about sensor performance based on limited testing
 o Sensor perception, sensitivity, and ranges highly variable
Types of Challenges

• Fusing data sources is difficult
 o Different units, manufacturers, libraries
 o Correlating objects between sensor types
 o Response magnitude may vary for materials/shapes

• Each sensor from a different manufacturer
 o Sometimes a sensor is a composition from even more suppliers
 o Technology layering and abstraction results in compounding corner cases
Types of Challenges

• Each sensor an embedded system
 o Limited insight into the system
 o Firmware updates
 o Debug ports, flash memory, configuration files
 o Network interfaces and protocols
 o Variety of interface libraries both Open Source and proprietary

• Constantly evolving sensor set (Next-best-thingitus)
 o Look, <Company name> just released a new sensor with better <property>!
 o Likely different than previous sensor or different manufacturer
 o Start security assessment all over again
Other Industries

- **Dedicated Short Range Communications (802.11p)**
 - DSRC motivated by federal infrastructure
 - Active standards development
 - Built with security in mind
 - Not evolution technology
 - A few ongoing pilot programs
 - Maybe security assessments should be included?

- **Military Applications**
 - Big budgets for security
 - Platforms tend to have high physical security
 - Small Numbers (relative to auto industry)
 - Strict revision control
 - See TARDEC VICTORY Program

SwRI Developed
Automated Tactical Vehicle
What Can We Do?

• Approach the problems from multiple angles:
 1. Involve In-House security resources (pen test, security policy, etc…)
 • Seek advice from existing In-House resources
 • Leverage institutional knowledge and experiences with other systems
 2. Engage with suppliers early
 3. **Integrate product lifecycle security**
 4. Identify avenues for exchanging and managing identified issues
 5. **Perform regular assessments**
 6. **Integrate external assessments and replicate results in-house**
 7. Monitor Hacker state of the art
 • Attend conferences
 • Review hacks or reports of other sensors
 • Many manufactures use similar tech
Supplier Communication

- Engage with vendor security team (if available)
- Some vendors more aware than others
- Some will be non-traditional automotive suppliers
- Establish POC on both sides for relaying:
 - Sending/receiving security findings
 - Design or process changes
 - Technology that may be shared across multiple platforms
- Consider hosting vulnerability reporting database
Lifecycle Security

ISO 26262/J 3061 Process:

- Security Requirements Development
 - Item Definition
 - Initiation Safety Lifecycle
 - Hazard Analysis and Risk Assessment
 - Functional Safety Concept

- Concept Phase
 - Initiation of Development System
 - Specification
 - System Design

- Product Development System
 - Requirements Specification
 - HW Architecture Design
 - HW Integration
 - HW Qualification
 - HW-SW Interface Requirements

- Hardware Development
 - SW Test
 - SW Safety Acceptance

- Software Development
 - SW Implementation

- Production and Operation
 - Product Release
 - Safety Assessment
 - Safety Validation
 - Integration

- Risk Modeling
- Asset Tracking
- Secure Over-the-Air Update
- Secure Code Practices
- Coding Analysis
- Penetration Testing
- Sensor Security
- Secure Interface Design

SwRI
Sensors Assessment

• Start evaluations of essential sensors
 - LIDAR, Radar, Vision, etc...
 - Subject models to security testing
 - Model and track vulnerabilities

• “Smart” Sensors
 - Typically contain embedded systems
 - Firmware images and onboard flash
 - Debugging ports
 - Variety of on-sensor functions
 - Networking capabilities (Ethernet, CAN)

• Typically “development friendly”
 - Well documented & publicly available
 - Configuration and demo applications
 - Sensors getting cheaper

• The result: Hackers Playground
System Assessment

• Will become more difficult as system matures
 o Need to track libraries used to develop system
 o Version control of multiple systems
 o Securing communications between modules

• Strict interface control
 o Data flow between user controls and safety critical
 o Autonomy Kit <-> Passenger Interface
 o System safety hypervisor

• Computer Vision
 o Demonstrated system classification manipulation
Outside Assessments

• Work with outside teams for better coverage
 o Request procedures & equipment lists not just findings
 o Replicate in-house
 o Build up assessment arsenal
 o Expand intuitional knowledge
Conclusion

• Involve In-House security resources
 o Seek advice from existing In-House resources
• Engage with suppliers early
• Integrate product lifecycle security
 o Identify avenues for exchanging and managing identified issues
• Perform regular assessments
• Integrate external assessments
 o Replicate results in-house
 o Request Procedures/Equipment/Source
 o Feed findings back into development process
• Monitor Hacker state of the art
Questions/Contact

Daniel Zajac
Daniel.Zajac@SwRI.org
(210) 522-4293
Senior Research Engineer

Edward Cain
Edward.Cain@SwRI.org
(210) 522-2417
Research Analyst

References: