Threats, Defined:

Updates from INL

11 Feb 2013
Bri Rolston
Obstacles to Managing Cyber Risk

• Cyber risk in general
 – Defined only in terms of technology or technical capabilities
 • TTL for 0-day and detection
 • Number extant vulnerabilities on a system
 • Known exploit techniques
 – Viewed as a punishment or an obstacle to getting work done
 – Driven by compliance
 – Not clearly understood by most stakeholders

• Cyber risk in CIP environments
 – See above
 – Multiply those factors by a lot
Adding to the Chaos of CIP Cyber Risk

- Technology isn’t used the same way anymore
 - Isn’t used to improve efficiency
 - All about how data is aggregated and consumed
 - Consumerization of technology (BYOD, anything as-a-Service)
- Development of hybrid relationships
 - Government and industry
 - National security groups and industry
 - COTS and ICS/OT
- Conflicting risk management goals
 - Operations vs IT
 - Business vs national security
- Technical security architecture doesn’t match threatscape
 - Candy bar theory of security architecture
 - Adversarial-based focus
Cyber Risk Management Goals

• General cyber risk goals
 – Provide a clear and consistent mechanism for evaluating cyber risk
 – Ensure cyber risk is considered equivalently to other enterprise risk
 – Define how technical data is mapped to risk management variables
 – Include technical characterization process for cyber components
 – Not be expressed in terms of technical security
 – Drive business process improvement
 – Encourage facilitation and collaboration across enterprise

• CIP goals
 – Demonstrate how cyber risk management improves resilience
 – Integrate with existing RCFA, BI, and ERM processes
 – Take advantage of cross-mapping controls to mitigate risk
INL’s Cyber Risk Research

• DOE-OE funded 2 projects related to cyber risk in CIP
 – Root Cause Security Analysis Model (RC-SAM)
 – Advanced Cyber Threat Characterization (ACTC)
• Research focus
 – RC-SAM
 • Mapping technical security data to risk variables
 • RCFA analysis process for cyber incidents
 – ACTC
 • Consistent technical threat characterization
 • Linking threat data to risk management
Consideration 1: Impact to OT/ICS

- IF Cyber Risk to OT & CIP networks =
 - Probability x Impact

- WHERE CIP impact
 - Is typically a physical result that impedes the ability to complete an automated process as required
 - AND
 - Is realized during any event in which cyber resources affect organizational ability to complete an automated process as required

- THEN cyber security efforts
 - Are relatively restricted in terms of how they can minimize risk
 - Can’t generally do much to minimize physical impact
 - Mostly focused on decreasing probability

- END IF
Consideration 2: Differing Risk Equations

- Two primary equations
 - Risk = Probability x Impact
 - Risk = Threat x Vulnerability x Consequence

- Risk equations are important to data mapping
 - Necessary to compare cyber risk equivalently
 - Organizes cyber data in a way everyone can understand
 - Makes sure have a more holistic understanding of risk

- Context matters
 - Different uses for each equation
 - Technical cyber security data should be mapped to one of the variables
 - Variable mash up confuses everyone
Consideration 3: Differing Risk Goals

- Big difference in the way risk is considered by:
 - Corporate world
 - National security groups (feds, law enforcement, military, DHS, intel community)

- Corporations use $R = P \times I$
 - Don’t care WHO causes the problem
 - Care about impact to service and the bottom line
 - Not critical in the incident response process to address threat

- National security groups use $R = T \times V \times C$
 - Do care about who poses a threat
 - Have the resources necessary to gather and generate effective threat intelligence assessments
 - Critical for these groups to characterize threat so can plan response
RC-SAM: Data Organization & Analysis

- RC-SAM → all about mapping technical data to risk variables
 - Dependent on cyber security order of operations
 - People
 - Process
 - Technology
 - Security
 - Uses Functional Security Matrix (FSM) for relationship mapping
 - Based on common RCFA techniques

- Results in
 - Methodical approach to understanding the problem trying to solve
 - Close the loop → RCFA drives business process improvement
ACTC: Variable Translation

- ACTC → all about data relationships among risk variables
 - Also uses FSM
 - Dependent on exploitation order of operations
 - People
 - Process
 - Technology
 - Exploitative work

- ACTC designed to
 - Characterize threat data consistently
 - Clarify how threat relates to and affects risk
 - Help people consume threat intelligence
 - Derive threat intelligence from $R = P \times I$ data
 - Move data more easily among groups without restriction
Project Status

- **Project status**
 - Work is just now kicking off
 - Will be using an agile development cycle
 - Reality management
 - Deliverable form and function
 - Consumer needs/requirements
 - Have industry partners onboard
- **Volunteerism and reciprocity**
 - Reality management volunteers needed
 - ROI → 2 for 1 deal
Questions??????

• No questions = unsuccessful presentation
• Unsuccessful presentation = lack of volunteers/industry participation
• Lack of industry participation = program failure
Contact Information

DOE-OE Program Sponsor: Carol Hawke
INL Program Managers: Dave Kuipers & Rita Wells

Bri Rolston
Critical Infrastructure Security Analyst
National & Homeland Security
Idaho National Laboratory
(208) 526-0026, office
Bri . Rolston @ inl . gov