Decade of Aggression

10 Years of Incident Response
Tips / Tricks
whoami

• IT professional with 18 years experience
 – Systems administration, Networking, Consulting, and Information Security
 – 10 years Incident Response (DoD & ISPs)

• Intrusion Detection & Analysis
• Digital Forensics
• Network Forensics
• Outdoor Enthusiast
In the Beginning...

• Worms
 – Sadmind
 – Welchia
 – Blaster

• Script Kiddies
 – Bandwidth
 – Disk space
 – Trading Warez
The more things change the more they stay the same...

- Who: Script kiddies
- What: Trading Warez
- When: ~30 days earlier
- How: WebChat vulnerability
 - PoC existed in the wild
 - Hiding in plain sight:
 - Renamed process of WSFTP server
 - Common looking service name
Reference System Configuration

• MacBook Pro OSX 10.6.8
 – 2.8Ghz Intel Core i7 (Dual Core w/Hyper-Threading)
 – 8 gig RAM
 – (2) Internal drives
 • Plextor PX-128M3 128gig SSD
 • Hitachi 500 gig 7200 rpm (system)
• (2) WD Caviar Black 2TB 7200 RPM
• (3) WD VelociRaptor 80GB 10,000 RPM
• Sonnet Tempo SATA Pro Express/34
Hard Drives (Physical)

• Mirror drives (where still applicable)
 – 100% reduction in imaging time
 – 0% downtime

• End users drive size
 – Bigger = Better
 • Maximizes recoverable artifacts over time
 • Increase Restore Point & Volume Shadow Copy size
 – Enforce remote storage vs. allowing local storage
 • Increases chances of having evidence on backups
Hard Drives (Virtual Storage)

- SANs / Network Storage
 - Maximize Snapshot retention
 - Multiple revisions of the file
 - Easily recover deleted artifacts / evidence
 - Ensure enough capacity to snapshot or clone your largest VM’s OS drive
Disk Imaging

- Use hardware mirroring, you can get (2) working copies per port
- Use dc3dd
 - Multiple drive output
 - Built-in hashing functions
 - Minimal overhead to run multiple hashes per image
- (2) drives per enclosure per port = (4) drives per laptop
- Speed of the output is limited by the speed of slowest drive
Disk Imaging Stats...

- FW800 -> RAID 1
 - 37 M/s with MD5 hash
- FW800 -> (2) eSATA drives via dc3dd
 - 55 M/s no hash
 - 52 M/s before hash, 35M/s after MD5
 - 50 M/s before hash, 34 M/s after SHA-1 & MD5
Know what you know...

• Getting the most bang for your buck
 – Capacity planning
 – Budgeting
 – Resource allocation
Performance Testing Tools Linux

• Linux
 – vmstat
 • Memory allocation stats
 – iostat
 • Drive throughput
 • CPU usage
 – top (general system / process stats)
 – Graphical monitoring
Performance Testing Tools OS X

• OS X
 – vm_stat (similar to vmstat on Linux)
 • Memory allocation stats
 – iostat
 • Drive throughput
 • CPU usage
 – top (general system / process stats)
 – Activity Monitor
 • Throughput
 – Network
 – Disk
 • CPU usage (process breakdown)
Testing Made Simple...

• Write throughput tests:
 – dc3dd wipe=/dev/sdX

• Read throughput tests:
 – dc3dd if=/dev/sdX of=/dev/null
 (tests speed from device)
 – MD5 & SHA1sum
That sounds good in theory…

- FW800 = 100 MB/s
- FW400 = 50 MB/s
- USB 2.0 = 60 MB/s
- USB 3.0 = 625 MB/s
- SATA 2.0 = 300 MB/s
- SATA 3.0 = 600 MB/s
Welcome to the real world...

- Linux desktop write blocker testing:
 - `dc3dd 7.1.614 of=/dev/null, no hash`
 - **Vendor A**
 - eSATA = 85 MB/s
 - eSATA = 99 MB/s (w/Advanced Host Controller Interface enabled)
 - FW800 = 58 MB/s
 - FW400 = 27 MB/s
 - USB 2.0 = 30 MB/s
 - **Vendor B**
 - eSATA = 62 MB/s
 - FW800 = 52 MB/s
 - FW400 = 30 MB/s
 - USB 2.0 = 25 MB/s
Not all things are created equal...

- Factors to consider:
 - Manufacturer / Model
 - Driver
 - Chipset

- Example: MBP Read testing
 - Card A:
 - Single Drive testing, 125 MB/s
 - Two Drive testing, 75 MB/s
 - Card B:
 - Single Drive testing, 135 MB/s
 - Two Drive testing, 99 MB/s
Work smarter, not harder...

- Not all Tools are created equal
 - File Carving
 - Scalpel
 - Foremost
 - String Searching
 - Scalpel
 - srch_strings and grep
Foremost File Carving

• 93 GB evidence image
• Results written to internal drive
• Simple scenario, search for:
 – PST, OST
 – DBX, IDX, MBX
• Results:
 – SSD:
 • 366 Mail files recovered, 6.5 GB in 11:57 min.
 – WD Caviar Black
 • 366 Mail files recovered, 6.5 GB in 17:59 min.
Scalpel File Carving

• 93 GB evidence image
• Results written to internal drive
• Simple scenario, search for:
 – PST, OST
 – DBX, IDX, MBX
• Results:
 – SSD:
 • 366 Mail files recovered, 34 GB in 13:23 min.
 – WD Caviar Black
 • 366 Mail files recovered, 34 GB in 20:55 min.
srch_strings

- 93 GB evidence image on SSD & WD Caviar Black
- Results written to internal drive
- Worst case scenario, strings entire image
- ASCII & Unicode
- Stats (nearly identical, only SSD listed):
 - Generate Strings:
 - ASCII: 21 GB, 39:55 min., ~40 MB/sec Read
 - Unicode: 424 MB, 20:32 min., ~77 MB/s Read
 - Search Strings 1 keyword: 13:23 min., 25 MB/sec Read
 - Total Time: 74:07 min.
Scalpel String Search

- 93 GB evidence image
- Results written to internal drive
- Worst case scenario, search entire image
- ASCII & Unicode
 - SSD:
 - Search String 1 Keyword: 5:45 min., 266 MB/s Read
 - WD Caviar Black
 - Search String 1 Keyword: 12:11 min., 132 MB/s Read

Andrew Case describes this method:
MacGyver Scaling

• Get creative / use your resources available
 – Boot SIFT on user workstations for extra processing nodes
 • Outfit these workstations for processing (install more RAM, FireWire cards, eSATA cards, etc...)

• Where applicable, make multiple working copies of the image.
MacGyver’s Processor Guidance

• One core per operation (depending on software’s multiprocessor capabilities)
• One core per HD
• Leave one core for the OS
 – Example:
 • Dual core MBP with HT can MD5 three drives simultaneously with CPU cycles left over
MacGyver’s I/O Guidance

• One operation type (read OR write) per HD
• Know your HD’s throughput numbers
 – Max. read, max. write
 – Average read, average write
• One read OR write function per physical card or device type (FireWire, eSATA, USB, etc...)
 – Example: Reference System could Read (FW800) and Write -> (2) eSATA drives on one physical card simultaneously, (4) SATA drives using mirroring enclosures
MacGyver Scaling Examples

• Reference System Optimal Usage:
 – Option #1
 • FW800 evidence results drive (Writing Only)
 • Evidence disks (2)
 – Disk #1 log2timeline processing (Read Only output to FW800)
 – Disk #2 anyone of the following: file carving, registry analysis, AV Scanning (Read Only output to FW800)
 – Option #2:
 • Use internal drive for results storage (Writing Only)
 • Add a third disk for evidence processing off of the FW800 port
 – Option #3:
 • Write results over the network
 • Add a fourth drive (internal) for evidence processing
Can I have that to go...

• Laptop requirements:
 – (2) Internal hard drives
 – ExpressCard slot for (2-3) additional ports
 • eSATA
 • FW800
 • USB 3.0
 – 8 gig of RAM
 – One external high speed connection built in
 • eSATA
 • FW800
 • USB 3.0
Don’t get cut by the bleeding edge...

• Standards are great, except when they impede security (consider the tradeoffs carefully)
 – If there isn’t a tool that can analyze the format, don’t adopt it.
 – Play to your strengths
 – Browser versions
 – Smartphones
 • Hardware
 • Software

• File Systems
 – Types (exFAT, ReiserFS, etc...)
Paint them into a corner...

- **System:**
 - Restrict Bios Access (No external boot options)
 - Restrict off network access
 - Disable Split tunneling
 - Force all devices through enterprise protections
- **Restrictive egress filtering**
- **Email**
 - Auto forwarding rules
 - Strict policy on personal email for business
- **Restrict BYOD (Personal / Professional Use)**
 - Tablets / eReaders
 - Smartphones
 - External media (USB, Hard Drives, etc...)
 - Restrict by manufacturer
Consider this...

• Hard Drives are so cheap they’re almost disposable:
 – Never reuse HDs
 • Shelf originals (especially during sudden separation / suspicious separation)
 – Wipe drives prior to reuse
 • Image and compress originals of important staff
Colocation, Collaboration, & Cohabitation != Cooperation

• Colocation / Shared Hosting Contract Notes:
 – Never let a third party have access to your system
 – Request for their system logs (Firewalls, Netflow, etc.) should not require a subpoena
 – Review their IR policies and procedures
 – If my site gets compromised, what are your processes and SLA?
You make me sick...

• Custom AV signatures:
 – You don’t want to tip your hand. (VirusTotal)
 – Can’t / Won’t submit targeted malware to your vendor
 – Need a detection mechanism for targeted malware
 – Scan for a handful of signatures instead of thousands
 – Search for traits to flag suspicious files for a deeper dive

• Cross platform supported tools:
 – ClamAV (Linux, BSD, Windows, OSX...)
 – YARA (anywhere Python, and Windows exe)
Crouching Vendor…
Hidden Vulnerability…

• Evil lurks within:
 – Printers and Vendor “Appliances”
 • Embedded OS
 – Linux
 – Microsoft
 – BSD
 • Poor patching support
 – Vendor maintained approved patches
 • Never hardened or hidden
 • Unknown threat surface
 • Treated as though they are model citizens
BCP... IR... and U...

• There may come a time when you realize... it really is that bad! And one of the few options you have left is to go DARK (aka Plan B)

• IR as part of your Business Continuity Plan (BCP)
 • Firewall / Router ACLs
 • Essential services and web apps. identified
Get out your tin foil hats...
Here comes Plan B...

• Stop using corp assets for communications
 – No VoIP
 – No corp email, encrypted or not

• In case of Emergency, Break Glass:
 – Backup consumer connection (Cable, DSL, etc.)
 – Secondary laptop
 – Setup a “Meta” network for response (site-to-site VPN)
 – Encrypt all communications traversing public networks
Well, I’ll never do that again...

• STOP
 – Do not disconnect a system from the network
 • Implement switch / firewall ACLs to block system
 – Do not AV scan a system until it is imaged
 – Never ship the original
 • Whenever possible, retain the original onsite
Things you always need but...

- **Full Packet Capture (FPC)**
 - When all else fails “Proof is in the packet!”

- **DNS Logging**
 - How will you know who asked for what?
 - Worst case turn logging on your MS servers

- **Proxy Servers**
 - Not for performance reasons!
 - URL’s requested, by whom
 - User Agent string
 - Blacklisting or better yet Whitelisting only
Free and Open Source Software (FOSS)

• Thank a FOSS developer or community contributor! There are plenty here!

Take your pick:

– Tools
– Scripts
– Authors (Blogs, Whitepapers, Books, etc...)
– Researchers
Forensified Investification
Questions ???

Christopher Witter
Twitter: mr_cwitter
Email: sparsefile:>gmail.com