
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Evaluating Untrusted Software In a Controlled
Environment
Tools and techniques of reverse engineering allow the professional analyst to identify and describe in detail
the behavior of malicious software in a test lab environment. However, many users and organizations lack both
the resources and time to subject untrusted software to such stringent tests. To address the key business
concern of "is this software safe to download and use?", a lightweight filtering methodology is proposed that
will yield a reasonably reliable answer with a very modest resource and time investment.

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/528

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Evaluating Untrusted Software In a Controlled Environment
Jeff Reava

June 20, 2002
GSEC 1.4

Abstract

Tools and techniques of reverse engineering allow the professional analyst to identify and
describe in detail the behavior of malicious software in a test lab environment. However,
many users and organizations lack both the resources and time to subject untrusted
software to such stringent tests. To address the key business concern of “is this software
safe to download and use?”, a lightweight filtering methodology is proposed that will
yield a reasonably reliable answer with a very modest resource and time investment.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

Introduction

Among the utilities and applications readily available for download from the Internet is
an abundance of malware. Among other things, malicious software contains “features”
that can include initiating unauthorized connections to other systems, downgrading
security settings, or even installing listener software designed to wait for remote
commands.

The development of techniques for examining the specific behavior of suspected
malicious software has been the subject of a number of research projects [1][2][3].

These approaches are an excellent starting point for professionals and researchers seeking
to understand the functioning of hostile software as fully as possible. However, many
system engineers and security professionals often approach the evaluation of untrusted
software with a different set of requirements. The question posed by non-technical users
seeking to evaluate a piece of software is much more basic, namely “is this program
‘safe’ to run on my PC?”

The goal of this paper is to propose a rudimentary method for detecting malicious
software behavior with reasonable accuracy. “Safe” software is not defined as software
free from bugs, or any level of resistance to abuse. The emphasis is on screening rather
than analysis, optimized for technical users who on occasion need to conduct a cursory
examination of software and provide a quick response. It is also assumed that the
examiner will have limited time and resources to dedicate to the effort.

Assumptions

First and foremost, the filtering process assumes that malicious software behavior is
overt, and evidenced by changes to local system settings, network interfaces, or network
traffic. The screening techniques are not exhaustive, and assume that the underlying
operating system behavior can still be trusted.

Also assumed is that the screener performing the test is able to clearly identify a pattern
of “normal” system behavior based on observation and experience, and is able to
separate between expected application operation and unwanted “functionality.” The last
case may be an artificial distinction if the organization’s policy disallows specific modes
of operation.

Finally, since the screening techniques represent a “black box” approach to testing
software during a short period of time, the intent is to catch the obvious offenders.
Software that does not fail in the analysis is not necessarily trustworthy. Organizations
need to move quickly, and the intent is to provide information that enables a vastly

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

improved mode of decision making over “eyeballing” untrusted software, while at the
same time requiring very little additional effort.

Overview

The key to successfully screening for malware lies in isolating and identifying suspicious
system changes. Typical changes in system behavior can include attempts to connect to
websites or open file shares, send email, or open other communication channels with
remote systems, launching new services and/or opening listening ports on a system that
wait for remote commands, or modifying startup settings to ensure that it will always run
each time the system reboots.

With the exception of network traffic analysis, the primary technique involves taking
snapshots of key system attributes before and after launching the untrusted software, and
watching for unexpected differences.

In general, the remainder of this paper will lay out these stages in a step-by-step process
that can be followed much like a cookbook recipe. Like all good recipes, though, the best
results come from interpretation and improvisation. The basic steps listed will work, but
are somewhat arbitrary approaches toward achieving the original goal: filtering out
overtly malicious software. Regardless of the tools selected, the most reliable results will
come from selecting a system state that is composed of many different attributes.

In order to analyze a system, the following components are necessary:

• Test laptop or desktop system running Windows (9X/NT/2000).
• A “Router” system: a Windows desktop/laptop with two network adapters and

Internet Connection Sharing enabled.
• A crossover network cable used to connect the test and router systems, and a LAN

line to connect the router to the network.
• Windump: for capturing network traffic.[4]
• Nmapnt: to scan for open ports on the test system.[5]
• GHOST: for system backup and restoration[6]
• InCtrl5: for system snapshot[7]
• FPORT for identifying processes on the test system that are bound to listening tcp

and/or udp ports.[8]
• PSLIST for listing all processes on a system, whether bound to ports or not.[9]
• Boot disk for network image transfer.[10]

Instructions for installing and configuring all of the components listed above will be
provided in the stages that follow. At a high level, the process of analyzing untrusted
software is encapsulated in seven basic steps:

1. Configure the test system.
2. Configure a filtering router to pass traffic transparently between the test

system and the network.
3. Install network analysis tools on the filtering router.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

4. Snapshot the test system to develop a detailed picture of known, trusted
system behavior

5. Transparently isolate the test system from the production environment.
6. Install the untrusted software to be tested
7. Analyze the change in system behavior based on the software install.

Graphically, figure 1 illustrates steps 1-3 where the router system is placed between the
test system and the network environment to which that test system is normally connected.

The logical isolation required by step 5 is illustrated in figure 2. Note that the isolation is
logical – not physical. The target system will have no initial indication that the link to the
network has been broken. Ideally, this will allow the untrusted software to behave
normally without risking any impact in the production environment.

Since there are numerous sub-processes in the overall testing flow, they will be described
in detail in the step-by-step discussion that follows.

1. CONFIGURE TEST ENVIRONMENT
Key requirements of the test environment include establishing a very close approximation
to the production environment without requiring substantial time and resource investment
by the tester. Ideally, an actual production machine will be “sandboxed” for the duration
of the test. That is, the production system is logically isolated from its networked
environment in a way that does not identify the established connections as broken. To
restore the system to its original state following a test, drive imaging software is used.

The overhead associated with archiving a functioning production image is accepted on
the premise that the tester does not need to apply patches or configuration changes to the
image in use in order to keep test client configurations synchronized with production
systems. Using imaging rather than VMWARE[11] virtualization means that repeated
testing is slower in this setting. However, the test environment is not virtualized and there

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

is no client administration unique to the testing environment between testing sessions. If
virtualization poses no drawbacks and frequent repeated testing is a requirement,
VMWARE is the better choice.
1.1 Configure Test Machine
Configuration changes to the test machine should be as minor as possible, so that the
untrusted software behaves the same on the test machine as would be expected on a
production system. Only one utility will be installed on the test machine: InCtrl5. The
other two utilities, Foundstone’s FPORT.EXE and Sysinternal’s PSLIST.EXE are not
installed in the sense that they change the underlying configuration of the system, but are
launched from a working directory on that system.

After building the test machine, it should be configured as follows:

1. Verify that the software installed on the test system matches the
production environment, especially with respect to service packs,
hotfixes, desktop applications, virus scan, and Email client software.

2. Download and install InControl5. Select the default options.
3. Download and unzip FPORT into a working directory such as

c:\snapshot.
4. Download, unzip and install PSLIST into the snapshot directory.
5. Test FPORT and PSLIST by launching them from a command line and

verify that are functioning correctly.

1.2 Configure Router
The “router” for this test is a dual-homed Windows 2000 Professional workstation, using
the Internet Connection Sharing feature. It must provide initial connectivity to the test
system that permit access to network services such as Email, file shares and web services.
Again, the assumption is that malware will attempt to use existing tools and connections
when they are present.

The router also must be able to monitor the traffic passing from the test machine to the
network, and it must also have the ability to actively scan the test machine for external
evidence of new or altered network services. Finally, it must be able to quietly break the
connection between the test system and the network so that any malicious software will
still activate normally, but not be able to communicate.

1.2.1 Enable Internet connection sharing
Dual-home the router system by ensuring that both network cards are installed and have
drivers configured. For the purpose of simply passing traffic, instructions for enabling
Internet Connection Sharing provided by Microsoft in Knowledge Base article Q237254
[12] describe the basic steps required, which are:

1. In Control Panel, double-click Network and Dial-Up Connections.
2. Right-click the connection you want to share, and then click

Properties.
3. Click the Sharing tab, and then click to select the Enable Internet

Connection Sharing for this connection check box.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

4. If the connection you are sharing is a Dial-up connection and you want
the connection to dial automatically when another computer on your
home network attempts to use external resources, click to select the
Enable on-demand dialing check box.

NOTE: To enable ICS in Windows, you must have administrative rights.
1.2.2 Enable network monitoring

In addition to controlling connectivity between the test system and the network, the router
system must also be able to “sniff” the traffic passing over the wire. The baseline traffic
of a known, trusted configuration will be used as the basis of comparison to any traffic
generated when the test software is launched. Windump (TCPdump for Windows) is
selected for this task.

To install windump:

1. First download the WinPcap packet capture architecture and execute
the auto-installer, following the prompts.

2. Next, download Windump.exe to a directory such as c:\tools.
3. Launch windump from a command line to verify that it is working

properly. Begin with commands such as:
windump –D (list all adapters)
windump –i# (where # is the number of the adapter facing the test
system, which was listed from the –D parameter.)

Traffic sniffing provides passive monitoring of network activity originating from the test
system. However, it will not detect a passive listener installed on the host system itself.
For that type of screening, the router system must actively scan the test system directly to
see how it responds.

1.2.3 Enable remote host scanning
Port scanning the test system after the untrusted software has been activated can confirm
the presence of an active listening service on the test system. Probing for listening
services is performed by Eeye’s port of NMAP to the NT platform. To install it:

1. Download the zip archive from
http://www.eeye.com/html/Research/Tools/nmapnt.html into a
directory such as c:\tools.

2. Unzip nmapNTsp1 into the tools directory.
3. From a command line, launch:
nmapnt.exe (no parameters).
4. When executed without parameters, usage instructions will appear,

followed by a list of available network adapters that can be specified
when launching a scan. Note the adapter facing the test system.

2. ENVIRONMENT PREP
2.1 Establish Test Machine Connectivity
Connectivity from the test machine to the network should be transparent through the
router. With the router system running and connected to both the network and to the test
system (either directly using a crossover cable, or indirectly through a hub/switch), start

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

the test system. It should pick up an IP address from the router, along with default
gateway information, and the DNS entries, etc. from the network. Connect drive letters to
network shares, launch the Email client, and make all of the other typical connections that
will be observed as part of the test. Ideally, the test system should not behave any
differently passing traffic through the Win2K router than it did connected directly to the
network. This is important, because the observed baseline connectivity represents the
point of reference for identifying unexpected suspicious behavior.

2.2 Archive System Configuration
At this stage, the test system most likely reflects a working production configuration that
may need to be restored. To ensure that this exact configuration can be reproduced either
for additional testing, or to ensure the ability to safely ‘undo’ the changes made by the
software being tested, GHOST by Symantec provides an easy way to archive and restore
an exact copy of the hard drive’s contents. NOTE: This is the only stage of the testing
process where an account with write privileges to the router’s hard drive should be used.
During the actual testing of untrusted software, the account used on the test machine
should have NO privileges to read/write data from shares on the router. The test system
should have no connections directly to the router at the time of the test.

The archive process requires a boot disk with network connectivity that will enable the
test system to map a drive letter to the router, run GHOST, and copy the image over that
connection to the router for storage. Symantec provides support and guidance for running
GHOST. As for a networking boot disk, there are many options available from
www.bootdisk.com.

Assuming that a network boot disk is available to connect to the router, and a copy of
GHOST, these steps provide a straightforward approach:

1. From router: Make an image folder on a local drive with at least 2GB
of free space. From a command prompt, type:

md c:\image
2. From router, to share out an imaging folder, type
net share image=c:\image
3. Since the share in the previous step is made available to everyone with

full access, restrict those permissions to <account name> which will be
used from the network boot disk (not the testing environment) to copy
over an image:

cacls c:\image /T /G <account name>:C
4. From the router, copy GHOST.EXE into the image shared folder.
5. From the test machine, boot from the network boot disk and map a

drive letter such as X: to the image share on the router.
6. To copy the entire hard drive from the test machine to the router using

compression:
ghost.exe -clone,mode=dump,src=2,dst=x:\test.gho
–z3

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

7. For safety, the share should be removed from the router, just in case
the untrusted test software turns out to be malware of the SMB share
scanning variety. Again, from a command line:

net share image /delete

3. SNAPSHOT THE ENVIRONMENT
Now that a functioning test system has been archived, what are the key elements of a
known good state? From the perspective of reverse engineering, that question requires a
very detailed view of file, process and memory usage examined step by step. Simple
screening for overtly malicious (or at least suspicious) software relies on a much less
detailed view, optimizing for the speed of examination instead of exhaustively detailing
the results. Again, the assumption is that malware will manifest itself either by installing
unwanted components, establish a listening service on the system, or attempt to “phone
home”, surreptitiously sending data from the test machine to a remote host.

To compensate for the limited detail provided by any single test, this approach relies on
observing the test system from multiple unique perspectives in the belief that if one
indicator does not detect malware behavior, another will.
3.1 Network Snapshot
A network snapshot in this context reflects elements of baseline, expected traffic by the
test system. Given that the test system has drive letter connections mapped, Email open,
etc. there is a certain level and type of network traffic that will be passing through the
router. For screening purposes, the assumption is that malware will be “noisy” in
comparison to usual traffic over established channels, or will attempt to establish new
connections.

To track traffic through the router with a minimum of background ‘noise’, only
communications on the test interface that originated from the router will be examined
using windump with syntax such as:

windump –i1 src testpc > test1.dmp

Where –i1 refers to the interface communicating with the test system, src limits
capture to packets originating from the test system (testpc), and test1.dmp is the target
file where console output is redirected to be saved.

A brief sampling of traffic from a relatively quiet test system should give a reasonably
distinct reference point to observe changes in activity. After capturing for a short period
(30 seconds) terminate the capture using Control+C.

NOTE: A network traffic snapshot will only be an effective screening measure if the test
system exhibits an observable increase in activity; if the system “at rest” is still fairly
“noisy” in terms of the amount of traffic produced, it will be much more difficult to
detect malware if the evidence appears as a change in traffic type instead of volume.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

3.2 Service Snapshot
Another possible indicator of malware behavior is a change in listening services active on
the test machine. Using nmapNT.exe, a baseline of listening ports can also provide an
indicator of malware if those services change during the untrusted software test. For
example:

nmapnt –e# –p1-65535 –v > maptcp1.txt

provides verbose output from a TCP connect scan against the test machine. The –e#
parameter explicitly requires the test machine interface (where # is 0, 1, etc.) is to be used
for running the scan.

UDP ports should also be scanned:

nmapnt –e# –sU –p1-65535 –v > mapudp1.txt

By this point, the network and service snapshots of the system will provide enough
information to filter against “aggressive” malware that actively attempts to connect to
external systems, and/or is openly listening for external connection attempts. To provide
a more complete filter and to attribute any suspicious behavior to a specific process,
closer examination from the workstation itself is required.

3.3 Host Snapshot
Host snapshots should identify three elements of system state: processes, listening
services, and file updates. Taking snapshots on the host system provides a different filter
perspective than examining the system externally from a network connection. Starting
with a known, trusted configuration, the initial host snapshot should identify all files and
configuration settings using InCtrl5, all active processes using SysInternal’s PSLIST, and
with the help of Foundstone’s FPORT, associate running processes with open ports
listening for connections.

3.3.1 File and System Configuration Snapshot
InCtrl5 notes changes that occur to files and registry settings as a result of configuration
changes or application installs. Using InControl5 in the default “2 phase mode”:

1. Start|Programs|InCtrl5|InCtrl5.exe
2. Click GO. Wait for the snapshot to complete.
3. Click OK and InCtrl5 will exit. At this point, InCtrl5 writes snapshot

files to c:\program files\InCtrl5 named xxx$$$.$$1. These files will be
deleted at the end of the snapshot.

4. Run the software to be tested, and then launch InCtrl5 again.
5. Press the Install Complete button to finish the analysis. InCtrl5 will

identify the changes that have occurred and present them in an html
report format.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

3.3.2 Open Process Snapshot
PSLIST dumps a summary of open processes running on the system. To capture the open
process list to a file, run pslist.exe from a command line with this syntax:

pslist > pslist1.txt

After taking a second snapshot, running the file compare command line utility will
identify differences between the two:

fc pslist1.txt pslist2.txt

3.3.3 Process Listener Snapshot
While PSLIST identifies all open processes, Foundstone’s FPORT shows the subset of
those processes that are network aware and will correlate those new files with open
listeners. From a command line:

fport > fport1.txt

Save the initial snapshot for comparison. After taking a second snapshot, the file compare
utility can quickly identify differences that appear as a result of testing the untrusted
software.

4. ISOLATE TEST ENVIRONMENT
Unlike virtual machine approaches to malware testing, this filter environment is built on
direct, live network connections. This poses a risk to production networks unless the
connectivity can be disabled at the “external” router interface (figure 2). At the same
time, the test system must still operate on the assumption that network links to the
production environment are still “alive”. Internet connection sharing provides a graceful
way to reliably disable the connectivity without alerting the test host.

To disable routing, execute these commands on the router system:

1. Start|Settings|Network and Dial-Up Connections|<shared connection>
2. Click the Sharing tab.
3. Uncheck the box marked “Enable Internet Connection Sharing for this

connection.”
4. Click OK.

5. ACTIVATE UNTRUSTED SOFTWARE
In the brief window of time between breaking the connection and when the network
connections begin to time out, activate the untrusted software from the test system. Even
though the router is not passing that traffic through to the rest of the network, if the
application makes an attempt to ftp or post data to a remote website, those packets will
appear during the network capture.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

5.1 Snapshot of Test Software Network Activity
The quality of the initial network snapshot will greatly affect the reliability of these
results as an indicator of malware activity. If the initial system snapshot was relatively
“quiet” and suddenly posts to http://www.foo.com, a positive outcome is easy to
conclude. However, “noisy” test systems may generate a baseline level of traffic that
make it more difficult to isolate and characterize the presence of additional suspicious
packets. Additionally, as the broken link begins to trigger timeouts, isolation becomes
problematic.

Once a reasonable amount of post-launch snapshot packet data has been captured, it
should be saved to a file. As in 3.1:

windump –i1 src testpc > test2.dmp

Windump begins capturing to a file, and can be exited using Control+C once a reasonable
sample has been collected.
5.2 Test Software Service Activity
Again, using nmapnt with the same parameters as in 3.2, enumerate the list of open ports
visible from the network for comparison and analysis against the trusted configuration
set.

5.3 Identify Host System Changes
5.3.1 Open Process Snapshot

Follow the same steps in 3.3.2 to generate an open process snapshot after the untrusted
software is executed. The untrusted executable should appear in the list, but the list
should be checked for any additional unexpected processes.

5.3.2 Process Listener Snapshot
As in 3.3.3, a second snapshot taken by launching FPORT from the command line can
identify changes to running processes that are actively listening to open ports on the test
system. Using the syntax:
 fport > fport2.txt captures the current processes.

Again from the command line, usage of the file compare utility makes comparison
simple:

fc fport1.txt fport2.txt

The value of this test assumes that the untrusted software being tested is not designed for
use as a listening server process. If it is, the open port(s) will of course appear and this is
expected behavior for the application. Filtering using FPORT identifies unexpected
features, but does not discern at this level of detail. For untrusted software with server
functionality, a reverse engineering approach is much more likely to yield a useful result.

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

5.3.3 File and System Configuration Snapshot Analysis
Completing the snapshot process involves running InCtrl5 a second time, following the
prompts and sifting through the results. Because even a “quiet” system generates a
significant volume of changes within the registry, it will be important to “tune” InCtrl5 to
trim the results to items of interest. Malware at times makes configuration changes to
ensure that it is loaded at every startup. For this reason, the following set of registry
changes may indicate the need for further examination:
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Also potentially suspicious are entries in the Current User or system startup groups
(folders):
C:\Documents and Settings\<USERID>\Start Menu\Programs\Startup
C:\Documents and Settings\All Users\Start Menu\Programs\Startup

Or, less commonly, legacy startup files:
C:\autoexec.bat
C:\winnt\win.ini
C:\winnt\system.ini
C:\config.sys

6. SAVE OUTPUTS FOR CURSORY SUMMARY REPORT
As essential as the actual testing itself is the preservation of findings in a meaningful
output format. From the router system, connect to the test system and save the
comparison results from the local fport, pslist and InCtrl5 snapshots on the router system
along with the nmapnt snapshot that was preserved there.

7. RESTORE SYSTEM
Restore the system by booting from a network disk, connecting to the router where the
system image is stored, and bring down the system image to overwrite the test system.
More specifically:

1. Boot the test system from a network boot disk.
2. Map a drive letter such as X: to the image share on the router.
net use x: \\router\image
3. Restore the entire hard drive, overwriting the tested configuration:
ghost.exe -clone,mode=load,src=x:\test.gho,dst=1
4. Remove the floppy disk and reboot the system.

8. CONCLUSION
Given before/after snapshots of system processes, file system changes, network activity
and open services, do the filter results represent a comprehensive view of actual system
state? Based on the initial assumptions used to define the filter processes, that’s not a
reasonable conclusion to reach. At the same time, if none of the recorded changes to

©
 S

A
N

S
In

st
itu

te
 2

00
2,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2002, As part of the Information Security Reading Room. Author retains full rights.

system state are unauthorized or unexpected, the rigor involved makes a conclusion that
“software X is safe” a reasonable one.

Reverse engineering, and unstructured informal testing of untrusted software represent
two extremes in the continuum of testing options available when examining software
operation in a lab environment. As extremes, they optimize different requirements,
namely speed of testing and reliability of results.

Most users and organizations have a different set of requirements, somewhere in the
middle between the two. Regardless of that position, all analysis involves comparing
changes in state on a variety of attributes and as such are easily operationalized in a
testing process that reflects those requirements in each defined phase of environmental
setup and analysis.

References
[1] The Honeynet Project, “The Reverse Challenge: Your challenge is to analyze a binary
captured in the wild.” http://www.honeynet.org/reverse/
[2] Zeltser, Lenny, “Reverse Engineering Malware”, May 2001
http://www.zeltser.com/sans/gcih-practical/revmalw.html
[3] Arnold, et al, “An Environment for Controlled Worm Replication and Analysis
or: Internet-inna-Box”
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm
[4] Windump http://windump.polito.it/
[5] Nmapnt http://www.insecure.org/
[6] GHOST http://www.symantec.com/ghost/
[7] InCtrl5 http://downloads-zdnet.com.com/3000-2096-10059071.html
[8] FPORT http://www.foundstone.com/knowledge/free_tools.html
[9] PSLIST http://www.sysinternals.com/
[10] Bootdisks http://www.bootdisk.com/
[11] VMWARE http://www.vmware.com/
[12] Microsoft Product Support Services, “How to Enable Internet Connection Sharing
on a Network Connection in Windows 2000 (Q237254)”
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q237254&ID=KB;EN-
US;Q237254&
Anderson, Ross, “Security Engineering: A Guide to Building Dependable Distributed
Systems”, Wiley & Sons, 2001
Mandia & Prosise, “Incident Response: Investigating Computer Crime”, Osborne, 2001
Kruse & Heiser, “Computer Forensics: Incident Response Essentials”, Addison Wesley,
2002

Last Updated: April 19th, 2014

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Abu Dhabi 2014 Abu Dhabi, AE Apr 26, 2014 - May 04, 2014 Live Event

US Cyber Crime Conference Leesburg, VAUS Apr 27, 2014 - Apr 28, 2014 Live Event

SANS Austin 2014 Austin, TXUS Apr 28, 2014 - May 03, 2014 Live Event

Security Leadership Summit Boston, MAUS Apr 29, 2014 - May 07, 2014 Live Event

SANS Security West 2014 San Diego, CAUS May 08, 2014 - May 17, 2014 Live Event

SANS Secure Europe 2014 Amsterdam, NL May 10, 2014 - May 24, 2014 Live Event

SANS ICS410 London 2014 London, GB May 12, 2014 - May 16, 2014 Live Event

SANS Melbourne 2014 Melbourne, AU May 12, 2014 - May 17, 2014 Live Event

SANS Malaysia @MCMC 2014 Cyberjaya, MY May 12, 2014 - May 24, 2014 Live Event

SANS Bahrain May 2014 Manama, BH May 17, 2014 - May 22, 2014 Live Event

AUD307: Foundations of Auditing Security and Controls of IT
Systems

Oklahoma City, OKUS May 21, 2014 - May 23, 2014 Live Event

SANS Secure Thailand Bangkok, TH May 26, 2014 - May 31, 2014 Live Event

Digital Forensics & Incident Response Summit Austin, TXUS Jun 03, 2014 - Jun 10, 2014 Live Event

SANS Rocky Mountain 2014 Denver, COUS Jun 09, 2014 - Jun 14, 2014 Live Event

SANS Pen Test Berlin 2014 Berlin, DE Jun 15, 2014 - Jun 21, 2014 Live Event

SEC511 Continuous Monitoring and Security Operations Washington, DCUS Jun 16, 2014 - Jun 21, 2014 Live Event

SANS Milan 2014 Milan, IT Jun 16, 2014 - Jun 21, 2014 Live Event

SANSFIRE 2014 Baltimore, MDUS Jun 21, 2014 - Jun 30, 2014 Live Event

SANS Canberra 2014 Canberra, AU Jun 30, 2014 - Jul 12, 2014 Live Event

SANS Capital City 2014 Washington, DCUS Jul 07, 2014 - Jul 12, 2014 Live Event

FOR518 Mac Forensic Analysis San Jose, CAUS Jul 07, 2014 - Jul 12, 2014 Live Event

SANS San Francisco 2014 San Francisco, CAUS Jul 14, 2014 - Jul 19, 2014 Live Event

SANS London Summer 2014 London, GB Jul 14, 2014 - Jul 21, 2014 Live Event

FOR518 Mac Forensic Analysis OnlineVAUS Apr 22, 2014 - Apr 27, 2014 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=34177
http://www.sans.org/abu-dhabi-2014
http://www.sans.org/link.php?id=36065
http://www.sans.org/us-cyber-crime-conference
http://www.sans.org/link.php?id=35217
http://www.sans.org/sans-austin-2014
http://www.sans.org/link.php?id=35505
http://www.sans.org/security-leadership-summit-2014
http://www.sans.org/link.php?id=35190
http://www.sans.org/sans-security-west-2014
http://www.sans.org/link.php?id=34077
http://www.sans.org/secure-europe-2014
http://www.sans.org/link.php?id=36195
http://www.sans.org/ics-london-2014
http://www.sans.org/link.php?id=34645
http://www.sans.org/sans-melbourne-2014
http://www.sans.org/link.php?id=34710
http://www.sans.org/malaysia-mcmc-2014
http://www.sans.org/link.php?id=36322
http://www.sans.org/bahrain-may-2014
http://www.sans.org/link.php?id=36540
http://www.sans.org/aud307-foundations-auditing-security-beta-2
http://www.sans.org/link.php?id=34695
http://www.sans.org/secure-thailand-2014
http://www.sans.org/link.php?id=33822
http://www.sans.org/dfir-summit-2014
http://www.sans.org/link.php?id=29600
http://www.sans.org/rocky-mountain-2014
http://www.sans.org/link.php?id=34550
http://www.sans.org/pentest-berlin-2014
http://www.sans.org/link.php?id=36390
http://www.sans.org/sec511-continuous-monitoring-security-operations
http://www.sans.org/link.php?id=34740
http://www.sans.org/sans-milan-2014
http://www.sans.org/link.php?id=27524
http://www.sans.org/sansfire-2014
http://www.sans.org/link.php?id=34650
http://www.sans.org/canberra-2014
http://www.sans.org/link.php?id=35690
http://www.sans.org/capital-city-2014
http://www.sans.org/link.php?id=36385
http://www.sans.org/for518-mac-forensic-analysis-2014
http://www.sans.org/link.php?id=32962
http://www.sans.org/san-francisco-2014
http://www.sans.org/link.php?id=34750
http://www.sans.org/london-summer-2014
http://www.sans.org/link.php?id=35735
http://www.sans.org/for518-mac-forensic-analysis
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

