
W H I T E P A P E R

Defeat Evasive Malware
Countering Sandbox Evasion Techniques Used by Malware

DEFEAT EVASIVE MALWARE

www.vmray.com | sales@vmray.com | © VMRay, 2018

Executive summary
Sandboxes are automated behavior-based malware
analysis systems that are at the core of most network
security solutions today. The deployment of sandboxes
to detect advanced threats began over a decade ago.
Back then, malware authors had already found ways to
evade traditional antivirus solutions, which rely on static
analysis, by using techniques such as polymorphism,
metamorphism, encryption, obfuscation and anti-
reversing protection. Malware analysis sandboxes
are now considered the last line of defense against
advanced threats.

The operating principle of a sandbox is simple. It
determines if a file is malicious based on the observed
behavior of the file in a controlled environment over a
defined analysis period. It does this by recording all the
actions performed by the file and determining if any
of these represent malicious behavior patterns. Since
detection is not based on static signatures, sandboxes
can even detect zero-day and targeted malware,
previously unknown to security researchers or analysts.

The success of behavior-based malware detection
hinges on the behavior exhibited by the file during
analysis. Thus, the objective of any sandbox evasion
technique is to conceal the real behavior of the
malicious file, thereby evading detection. Malware
authors are always looking for new, innovative ways to
elude sandboxes.

In this whitepaper, we look at three categories of
approaches taken by malware to evade sandboxes and
explore techniques associated with each approach.

• Evasion by active detection of analysis environment:
In the first approach, malware uses several techniques
to actively detect the existence of a sandbox. It then
conceals malicious intent by altering its behavior as
soon as it determines that it is being executed in a
sandbox, thereby evading detection. Since sandboxes
often use virtual environments, a widely-used
technique in this category is detecting the presence of
a virtual machine or hypervisor.

• Evasion by using time, event or environment based
triggers: In the second approach, malware delays

the execution of a malicious payload until a certain
trigger or event occurs. By choosing a trigger that is
unlikely to be activated inside a sandbox, malware
remains undetected in an analysis environment. As
an example, since sandboxes usually spend only a
few minutes analyzing each file, malware can evade
detection by delaying the execution of a malicious
payload by a certain amount of time. Besides time-
triggers, malware can also use other events such as a
system reboot or user interaction that do not normally
occur in a sandbox.

• Evasion by exploiting sandbox weaknesses: In
the third approach, malware performs malicious
operations but exploits weaknesses in the underlying
sandbox technology or in the surrounding ecosystem
to avoid detection. Evasion techniques that belong
to this approach include hook circumvention, using
obscure file formats which cannot be handled by
the sandbox or exploiting the sandbox’s inability to
process files that exceed a certain size.

Approach 1: Evasion by
active detection of analysis
environment
The first approach to sandbox evasion relies on actively
detecting the presence of a sandbox by looking for
small differences between the analysis environment
and the system on which the malicious file is meant
to be executed i.e. the intended victim’s system. If the
malicious file determines that it is being executed in a
sandbox, it usually reacts in one of the following ways to
avoid detection.

• It terminates immediately without performing any
malicious operations. However, this is likely to raise
suspicion.

• It terminates immediately without performing any
malicious operations and displays an error message
related to a missing system module or a corrupted
executable file to avoid raising any suspicion.

• It performs only benign operations, thus prompting
the sandbox to classify it as non-malicious.

DEFEAT EVASIVE MALWARE

There are several techniques associated with this
approach and in this section we look at four of the most
widely used ones.

T E C H N I Q U E 1: D E T E C T I N G T H E
H Y P E R V I S O R O R T H E V I R T UA L
E N V I R O N M E N T
Since sandboxes often use virtual environments, a
widely-used technique in this category is detecting
the presence of a virtual machine or hypervisor. This
evasion technique is not very relevant today since
many production environments(workstations and
servers) are virtualized and virtualization is no longer
primarily the realm of only researchers and malware
analysts. To determine if it is being executed in a
virtual environment, malware looks for certain specific
artifacts. Before the emergence of full hardware support
for virtualization, there were several technical artifacts
that existed in virtual machines that malware could look
for. These include

• Trying to access port 0x5658 to detect VMWare or
detecting Virtualbox via a backdoor

• Looking for generic VM artifacts (for example the
popular “Red Pill” method)

However, this is not a very effective detection
mechanism today. With hardware virtualization support,
there are very few visible artifacts, if any, inside the VM
since most hardware aspects are now virtualized and
handled by the CPU itself. Therefore, they do not have to
be simulated by the hypervisor. A detection mechanism
that is still relevant today involves detecting the
implementation artifacts of the hypervisor. An example
of this is determining the vendor from the MAC address,
device ID or the CPU ID or from the existence of certain
processes, files, drivers, registry keys or strings in
memory.

T E C H N I Q U E 2: D E T E C T I N G S A N D B OX
A R T I FAC T S
In this evasion technique, it is not the hypervisor that the
malware is trying to detect, but the sandbox itself. This
can be done in any of the following ways:

• Malware can use vendor specific information

associated with popular sandbox products. For
example, the existence of certain files, processes,
drivers, file system structure, Windows ID, username
etc. can reveal the presence of a sandbox

• Alternatively, malware can use vendor-specific
mechanisms related to the ecosystem. For example,
mechanisms to revert the analysis environment back
to a clean state after infection (examples include
Deepfreeze and Reborn Cards) or mechanisms to
perform communication with the sandbox controller
(examples include additional listening ports and a
specific network environment such as master server).

• Knowledge of the underlying sandbox technology
can also be used by malware to detect the analysis
environment. Emulation and Hooking are examples
of underlying technologies that can reveal the
presence of a sandbox to malware (Refer to the
VMRay technology whitepaper for more details).
In the case of hooking, sandboxes inject or modify
code and data within the analysis system. The ‘hook’
is essentially a shim layer capturing communication
between processes, drivers and the OS. A hook can
be implemented in many ways such as: inline hooks,
IAT/EAT modification, proxy DLL, filter drivers etc.
This makes them detectable by inspecting certain
instructions or pointers or by verifying the integrity of
the system, for example by verifying hash signatures
of relevant system files.

A theoretically perfect emulation-based sandbox is
identical to a native system. However, in practice,
there are always differences. For example, different
instruction semantics and different time lapses during
an operation can be exploited by malware to detect an
emulation based sandbox and evade it.

Figure 1 – VMRay Analyzer reporting a malicious file
attempting to detect the presence of a sandbox and virtual
machine

www.vmray.com | sales@vmray.com | © VMRay, 2018

DEFEAT EVASIVE MALWARE

T E C H N I Q U E 3: D E T E C T I N G A N
A R T I F I C I A L E N V I R O N M E N T
Sandboxes are usually not production systems, but
specially set up for malware analysis. Hence, they
are not identical to real computer systems and these
differences can be detected by malware. Differences
may include:

• Hardware properties such as: unusually low screen
resolution, no USB 3.0 drivers, lack of 3D rendering
capabilities, only one (V)CPU and small hard disk and
memory sizes.

• Software properties such as an atypical software
stack. For example, no Instant Messenger, no mail
client.

• System properties such as uptime (“system restarted
10 seconds ago”), network traffic (“system uptime
is days, but only a few megabytes of data have been
transmitted over the network”), no printers or only
default printers installed.

• User properties such as a clean desktop, clean
filesystem, no cookies, no recent files, no user files.

T E C H N I Q U E 4: D E T E C T I N G T I M I N G
D I F F E R E N C E S
Monitoring the behavior of an application comes with
a time penalty, which can be measured by malware to
detect the presence of a sandbox. Sandboxes try to
prevent this by faking the time. However, malware can
bypass this by incorporating external time sources such
as NTP or timestamps included in HTTP requests. An
example of timing-based detection is shown in figure
2, where the time-stamp counter is checked by the
malware.

Figure 3 shows the Pafish application detecting
artifacts that often exist in analysis environments.
Malware will also run checks like this. For example,
if certain operations take longer than expected, the
malware terminates or performs only benign operations
on the assumption that it is running inside an analysis
environment.

www.vmray.com | sales@vmray.com | © VMRay, 2018

Approach 2: Evasion by using
time, event or environment based
triggers
In this approach, malware does not actively try to detect
a sandbox or analysis environment. Instead, it delays or

postpones its malicious payload until a certain trigger or
event occurs. The trigger that is chosen is very unlikely
to be activated inside a sandbox. Several techniques
can be used to implement a trigger or event based
payload delivery.

T E C H N I Q U E 1: U S I N G T I M E B O M B S
One of the most common techniques is to delay
execution for a certain amount of time since sandboxes
usually run samples only for a few minutes. As with
many other evasion techniques, the utilization of time

Figure 2 – VMRay Analyzer reporting a malicious file
attempting to detect a VM using the time-stamp counter

Figure 3 – Pafish detecting artifacts that exist in analysis
environments

DEFEAT EVASIVE MALWARE

bombs is an ongoing cat and mouse game: the malware
goes to sleep, the sandbox tries to detect the sleep
and reduce the sleep time, the malware detects the
reduced sleep time, the sandbox tries to hide this by
also updating system timers and so on. Some of the
methods used by malware include

• Simple to very complex sleep mechanisms

• Executing only at a certain time or on a specific date:
For example, 12AM or the 12th of March.

• Slowing down execution significantly: For example,
injecting millions of arbitrary system calls that have
no effect except to slow down execution, especially
when being executed in a monitored or emulated
environment.

T E C H N I Q U E 2: WA I T I N G F O R
SYS T E M E V E N T S
In this technique, malware becomes active only on
shutdown, after reboot, or when someone logs on or
off. It does this because these triggers are unlikely to be
activated inside a sandbox.

T E C H N I Q U E 3: WA I T I N G F O R U S E R
I N T E R AC T I O N
Another technique frequently used by malware to evade
sandboxes is waiting for specific user actions before
becoming active. Again, the trigger that is chosen is
very unlikely to be activated inside a sandbox. Examples
include

• Waiting for mouse movement or keyboard input.

• Interacting with certain applications, for example
browser, email, Skype, an on-line banking application.

• Becoming active after a user has clicked multiple
buttons and checked various checkboxes (Fake
installers).

• Becoming active only when the user scrolls or
clicks (Office documents with malicious embedded
content).

T E C H N I Q U E 4: O P E R AT I N G O N LY I N
A S P E C I F I C TA R G E T SYS T E M
Sophisticated targeted malware only works on the

www.vmray.com | sales@vmray.com | © VMRay, 2018

intended target system. The identification is usually
based on the current username, time zone, keyboard
layout, IP address or some other system artifacts. The
check itself can be done in various ways, ranging from
simple to very complex methods.

• Simple checks include string checks.

• Complex checks that are nearly unbreakable if the
expected target environment is not known. For
example,decryption with the hash taken from the
environment settings.

The malware will only proceed to the second stage,
i.e. downloading the main payload, if it determines it
is in the expected target environment. This is related
to the scenario where the malware detects that
the environment is most likely an artificial analysis
environment. Examples include:

• Checking the network usage statistics of the system

• Checking the ‘Recently used documents’ folder since
real systems usually have many files stored here

• Checking the number of running processes and only
continue if the number exceeds a threshold.

Approach 3: Evasion by exploiting
sandbox weaknesses
Explicitly searching for the existence of a sandbox could
raise suspicion. Advanced malware, therefore, exploits
weaknesses in the underlying sandbox technology to
perform operations in the sandbox’s blind spot. By

Figure 4 – VMRay Analyzer reporting a malicious file that
installs a system startup script for persistence

DEFEAT EVASIVE MALWARE

exploiting these blind spots, malware does not have to
worry about being detected even if it is being executed
in a sandboxed system.

There are many evasion techniques under this approach
and in this section we look at two of the most widely
used ones.

T E C H N I Q U E 1: B L I N D I N G T H E
S A N D B OX
Most sandboxes do in-guest-monitoring, i.e. they
place code, processes, hooks etc. inside the analysis
environments. If these modifications are undone or
circumvented, the sandbox is blinded – in other words,
visibility into the analyze environment is lost. This
blinding can take the following forms:

• Hook Removal: Hooks can be removed by restoring
the original instruction or data.

• Hook circumvention: Hooks can be circumvented
by using direct system calls instead of APIs,
calling private functions (which are not hooked), or
performing unaligned function calls (skipping the
“hook code”).

• System file replacement: Hooks usually reside in the
system files that are mapped into memory. Malware
can unmap these files and reload them. The new
loaded file version is then “unhooked”.

• Kernel code: Many sandboxes are not capable of
monitoring kernel code or the boot process of a
system.

• Obscure file formats: Powershell, .hta, .dzip are just
some examples of file formats that may slip by and
simply fail to execute in a sandboxed environment.

• Unsupported technology: Examples of technologies
that are not supported by some sandboxes include
COM, Ruby, ActiveX and JAVA. Their usage can help
evade these sandboxes.

• Operating system reboots: The idea here is to exploit
the fact that some sandboxes cannot survive reboots.
Some sandboxes try to emulate a reboot by re-logging
in the user, however this can be detected and not all
triggers of are boot are executed.

T E C H N I Q U E 2: B L I N D I N G T H E
E C O SYS T E M
By simply overwhelming the target analysis
environment, malware can also avoid analysis with this
crude but sometimes effective approach. For example,
some sandboxes only support files up to a certain size
(10 MB). Others don’t support multiple compression
layers. By exploiting these shortcomings, malware can
easily evade sandboxes.

Conclusion
Of the three approaches, evasion by using time, event
or environment based triggers is the least sensitive to
the underlying sandbox analysis technology. As analysis
technology improves, environmental triggers will
become increasingly important to malware authors.

Hence, it is critical for incident responders and analysts
to ensure they are using target analysis environments
that

accurately replicate in every detail the actual desktop
and server environments they are protecting.
Furthermore, it is important to have pseudo-random
attributes as part of the target analysis environment.

Generic sandboxes running identical standard target
environments are no longer sufficient. Further, the
analysis environment needs to be able to detect
environment queries and identify hidden code branches.

To ensure that malware cannot evade analysis, a
sandbox analysis environment should

• Not modify the target environment.

In common sandbox analysis methods like hooking,
the presence of a hook (the injected user-mode or
kernel-level driver that monitors and intercepts API
calls and other malware activity) gives malware the
opportunity to evade detection or disable the analysis.

• Run gold images as target analysis environments.

For efficiency and convenience, many sandboxes have
a ‘one size fits all’ approach. A single type of target
environment is used for all analysis. A better approach

www.vmray.com | sales@vmray.com | © VMRay, 2018

DEFEAT EVASIVE MALWARE

is to use the actual gold images (that is, the standard
server OS and application configurations that your
enterprise uses) as the target environment. That way,
you can be assured that any malware that is targeting
your enterprise and could run on your desktops or
servers will also run in the analysis environment.

• Monitor all malware-related activity, regardless of
application or format.

Some sandboxes, particularly those using a hooking-
based approach, take shortcuts for the sake of
efficiency in determining what activity is monitored.
This can leave blind spots.

References
• VMWare Knowledge Base: How to determine if

software is running in a VMware virtual machine

• Black Hat documentation: Comprehensive Virtual
Appliance Detection: Kang Li and Xiaoning Li

• Forcepoint Security Lab blogs: Locky returned with a
new Anti-VM trick

• Exploit Database Papers: Breaking the Sandbox:
Sudeep Singh

• Broken Browser blog: Detecting analysts before
installing the malware

• Symantec Advanced Threat Research: Attacks on
Virtual Machine Emulators: Peter Ferrie

• The invisible things Lab’s blog: Introducing Blue Pill:
Joanna Rutkowska

• Pafish: https://github.com/a0rtega/pafish

• VMRay Analysis Report: Analysis report showing
Blinding the Monitor

• VMRay Blog: https://www.vmray.com/blog

ABOUT VMRAY

VMRay delivers 3rd
generation threat analysis
and detection using
advanced hypervisorbased
dynamic analysis. The
VMRay analyzer is platform
independent and highly
scalable.

By monitoring at the
hypervisor level, it is
undetectable by malware
running in the target
operating system.

Based in Bochum, Germany
VMRay works through
channel partners and OEMs
to deliver our solution to
leading enterprises around
the world.

https://kb.vmware.com/s/article/1009458
https://kb.vmware.com/s/article/1009458
https://www.blackhat.com/docs/asia-14/materials/Li/Asia-14-Li-Comprehensive-Virtual-Appliance-Detection.pdf
https://www.blackhat.com/docs/asia-14/materials/Li/Asia-14-Li-Comprehensive-Virtual-Appliance-Detection.pdf
https://www.forcepoint.com/blog/security-labs/locky-returned-new-anti-vm-trick
https://www.forcepoint.com/blog/security-labs/locky-returned-new-anti-vm-trick
https://www.exploit-db.com/docs/english/34591-breaking-the-sandbox.pdf
https://www.exploit-db.com/docs/english/34591-breaking-the-sandbox.pdf
https://www.brokenbrowser.com/detecting-apps-mimetype-malware/
https://www.brokenbrowser.com/detecting-apps-mimetype-malware/
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
https://github.com/a0rtega/pafish
http://www.vmray.com/analyses/663310/report/overview.html
http://www.vmray.com/analyses/663310/report/overview.html
https://www.vmray.com/blog

